
Scientific Community Codes: State of Practice and Concerns

A. Dubey

August 24, 2015

1 Introduction

A workshop, “Building Community Codes for Effective Scientific Research on HPC Platforms,” was
conducted at the University of Chicago in September, 2012. The invitees included representatives
from academia, national laboratories, and the industry. The format of the workshop was a combina-
tion of invited presentations, panel discussions and informal group discussions. The detailed work-
shop agenda and slides from the presentations are available at http://flash.uchicago.edu/cc2012 .
A range of topics were covered during the workshop, and several community codes from diverse
research communities were represented. The presentations from the research communities included
FLASH, EMSF, QCD, industry (P&G), Enzo, Cactus and Amber. Presentations also included
libraries that provide tools and support to community codes in many forms such as Chombo, yt,
vistrails, and HPCToolkit. Below we describe the findings with regard to the state of practice
in software engineering among the community codes represented in the workshop, and the major
concerns facing the communities.

2 Software Engineering and Concerns

We define community codes as scientific applications software that have sizable user and contribu-
tor base. In some cases there are more users than contributors, while in others all users are in some
sense contributors. One common feature of all community codes is that they provide substantial
fraction of ready to use computing tools needed by the end user. Presentations and panels together
gave a fairly comprehensive snapshot of software engineering practices in use by the various com-
munity codes. Several codes have composable components that allow for customization. All codes
employ separation of concerns (parallelization Vs operators) in their architecture. Common prac-
tices include repositories, coding standards, testing frameworks, licensing, policies for distribution
and contributions. An important concern for these codes is also managing development when the
code is also in production simultaneously.

The workshop also brought attention to some of the most important issues in scientific software
development that are critical for the codes and the research communities served by these codes.
Having a robust and well supported community code provides a definite advantage to the community
in terms of the start-up cost of research projects. For example, if a code provides infrastructure
for IO, analytics and fundamental solvers, the end users do not have to spend any of their research
resources developing them. Instead, they can concentrate on implementing custom capabilities
applicable to their specific projects, and therefore obtain results much more quickly. Several teams
would not be in a position to use high performance computing if it wasn’t for the availability of
the HPC capable community codes that meet most of their computing needs. However, despite all
these obvious benefits there continues to be a scarcity of successful community codes and a lack of

1



willingness by the research communities to invest in them. One of the objectives of the workshop
was to identify issues that keep the community codes from reaching their potential and to propose
and evaluate solutions that would help mitigate this problem. Some of the issues brought out in
the discussion were :

• Development Versus Maintenance - In general it is easier to get resources for development
of a code than for support of a mature code. This is a real problem because for domain
research, mature robust codes are most useful. However, scientific software is rarely in a
state where significant intellectual input is not needed even for maintenance. The need for
intellectual input may come in the form of a tweak to a numerical algorithm, a need for greater
scaling, or the simple challenge of porting to a new platform with a different architecture.
One proposed solution was to encourage proposals to allocate resources for the community
code team if they plan to use one.

• Open Source and Accountability - Scientific software projects are almost always community-
sourced. Most licensing agreements include disclaimers about taking responsibility for the use
of the code. Industry is uncomfortable with using software products that do not come with
accountability and a warrantee of some kind. The issue is one of liability. Therefore, even if a
software product is potentially useful, industry is wary of using it. One of the ways in which
this can be mitigated is the “red-hat” model, where the software is available freely but the
support and maintenance has a fee. This is a model worth exploring.

• Prioritization - One of the challenges faced by large scientific codes is the tension between
the needs of the science goals and long term health of the code. The situation is exacerbated by
the usual agency model where the priorities are driven almost exclusively by scientific results.
This is unhealthy and short-sighted. However, because of lack of funding for development
and maintenance, and the sociological problems arising out of the need for interdisciplinary
interaction and agreement, this problem is a difficult one to solve.

• Credit and Career Growth - The lack of career paths for developers of highly technical
scientific codes is a matter of concern. The nature of the work demands talented program
writers who have a breadth of knowledge ranging from HPC and software engineering and
numerics to some minimal degree of comfort with the domain science. Such people are rare,
and they are almost always under-valued. The funding agencies could be very helpful in
bringing about change. Just as there is a requirement to outline plans for data management
and outreach in every proposal, there should be a similar requirement to include support for
technical expertise, and the funding agencies should be willing to allow budgeting for such
people.

3 Conclusions

The consensus among the participants in the workshop was that community codes have a unique
value, and a forum for ongoing discussion about their requirements and concerns is necessary. It
is equally important to evangelize the community codes’ usefulness to research communities that
use computing for obtaining scientific results. Community codes reduce the barrier to entry for
new researchers in computing based research, provide more reliable means of achieving results and
foster communications within communities and among communities. All of these factors benefit
and enhance science and engineering research.

2


