
QMCPACK
Contact: Paul Kent kentpr@ornl.gov; Anouar Benali benali@anl.gov; Ying Wai Li
yingwaili@ornl.gov
http://www.qmcpack.org

QMCPACK is a fully open source (BSD license) high-
performance Quantum Monte Carlo (QMC) code. It
implements the highest accuracy methods that are
generally applicable for computing the electronic
structure and properties of molecular through to
condensed matter systems. The predictions can be
used to validate or even replace the results from
cheaper but less accurate methods such as the widely
used density functional theory. Significant efforts are
underway to improve the methodology by removing the
remaining systematic approximations and thereby
obtain a general fully convergent electronic structure
method. The ability to treat isolated through to periodic
systems on the same footing distinguishes QMC
methods from Quantum chemical approaches.
Applications range widely from molecular systems to
transition metal oxides. The ability to consistently
model van der Waals, covalent, ionic, and metallic
systems is attractive.

QMCPACK is developed by ~10 people, with
contributions from LLNL, SNL, ANL, ORNL and
University of Illinois. Development is currently mainly
funded via a DOE BES Predictive Theory and Modeling grant. Community contributions
are welcomed and solicited via a google group.

The code is highly optimized for all DOE HPC machines. For production runs, processor
counts in the 100K range are common, while scalability is sufficient to run on the full
Sierra, Mira, or Titan systems with >90% parallel efficiency. Science campaigns are
supported by, e.g. INCITE allocations consume more than 250M core-hours/year at
ALCF and OLCF. Additional time is spent at LLNL.

QMCPACK has been developed over more than one decade, starting in the group of
Prof. David Ceperley at the University of Illinois and later at ORNL. The codebase is C++
and remains manageable by a combination of object orientation and generic
programming (templates). The core package is estimated to be 100K source lines. For
production science the program is either run directly or via a workflow system (Nexus)
developed in python and included with QMCPACK.

The code utilizes MPI, OpenMP, CUDA, HDF5, ADIOS (optional), BLAS/LAPACK,
FFTW, and libXML. The core computational kernels are compiled C++ or CUDA C. None
of the key computational operations are available in standard libraries, e.g. batched
Sherman-Morrison matrix update, batched 3D spline interpolation. (Batching refers to
simultaneous updates on multiple data sets for improved computational efficiency).

Charge density difference between bilayer A-B
stacked phosphorene and isolated sheets,
computed by diffusion Quantum Monte Carlo
with QMCPACK. Red indicates an
accumulation of charge due to the interlayer
interaction, blue indicates depletion. Many
current density functionals do not capture this
interaction even qualitatively, demonstrating
the important benchmarking role of QMC.
http://arxiv.org/abs/1508.04788

mailto:kentpr@ornl.gov;%20Anouar
mailto:benali@anl.gov
http://arxiv.org/abs/1508.04788
http://arxiv.org/abs/1508.04788

The essential abstraction in Monte Carlo simulations is the Markov chain, or, in QMC
terminology, a “walker”. Various Monte Carlo methods define different procedural
operations; they are arranged into classes of objects and methods that encapsulate the
generalities of Markov chain generation (random walks). These methods operate on the
data owned by the walker objects, e.g., the current set of stochastically updated electron
positions.

Programming code is largely shared and reused between different QMC algorithms.
However, our main challenge is to maintain a single performance-portable code base,
both as the architectures change and as new and more varied science is done with
QMCPACK. Within diffusion QMC, which consumes the majority of computational time,
the number of these walkers is dynamically variable. These walkers naturally map onto
computational threads and are load balanced using MPI. The multicore CPU
implementation uses OpenMP to update one or several walkers per thread; when
running on GPUs the code operates on vectors of many walkers simultaneously. This
provides additional vectorization/parallelism to exploit the GPUs and achieve high
performance. We expect that this generalization will also accelerate performance on
CPU and Xeon Phi. The code is similar but required a large amount of simple but by-
hand restructuring. Algorithms using GPUs for acceleration are arranged in classes
derived from the same base classes as the CPU implementation, but these branches are
currently maintained separately.

Another challenge concerns larger systems which will require subdividing the
computational effort of one walker over many computational elements. We anticipate a
tasking approach, but require strategies to run small tasks efficiently.
We expect the lessons-learned during the first CUDA GPU implementation will benefit
other architectures. To enable a single codebase, efficient management of
hierarchical memory and thread / task scheduling on different computer
architectures, abstracted at the programming language / compiler / standard
library level, would be essential. We are hopeful that future C++ language features
will enable a single codebase to support all relevant architectures without use of
vendor proprietary and vendor specific libraries.

We are confident that QMCPACK will be able to run at exascale and beyond. As
improved strategies become available for obtaining performance portability, we will
adopt them. Our greatest fear is that we will not be able to hire sufficiently skilled
computational scientists to ease this transition and that they will lack an attractive and
well-defined career path that recognizes their distinct role.

Strong scaling of QMCPACK on Titan, showing results for
256 and 768 electron TiO2 systems. The rightmost points
use 16000 nodes or 86% of Titan.

Strong scaling of QMCPACK (VMC and DMC)on Mira,
showing results for 704 electrons Pt system solid system.
The rightmost point uses 32768 nodes or 66% of Mira.

