
Overview of the PETSc Library
A White Paper Submitted to the

DOE High Performance Computing Operational Review (HPCOR)
on Scientific Software Architecture for Portability and Performance

August 2015

Matthew G. Knepley1, Jed Brown2, Lois Curfman McInnes2, Barry Smith2, Karl Rupp3, and Mark Adams4

1Rice University, 2Argonne National Laboratory, 3TU Wien, 4Lawrence Berkeley National Laboratory

knepley@rice.edu, [jedbrown,mcinnes,bsmith]@mcs.anl.gov, rupp@iue.tuwien.ac.at, mfadams@lbl.gov

The PETSc software package [1, 2] implements hundreds of published numerical algorithms and can
use over 50 optional external software packages. PETSc is used by a broad range of scientific applications.
This white paper addresses questions posed by the HPCOR workshop organizers.

How many developers are involved and how is the development structured? The PETSc team
consists of about 10 core developers, most of whom are at the postdoctorial level and are located at various
institutions worldwide. In addition to contributions by core developers, over 50 community contributors
provide input, ranging from small patches to larger pieces of functionality, which is incorporated into
PETSc each year.

Language. The primary language used for PETSc is C, with support for Fortran, Python, and Julia.

Lines of code? PETSc consists of roughly 400,000 lines of code. These include comments in source
files but not source code in examples and tests.

Primary methods? Core PETSc capabilities are scalable algebraic solvers for ODEs/DAEs, nonlinear
solvers, and linear solvers, including domain decomposition and multigrid.

Types of problems/domains/science application problems? PETSc is typically used in simula-
tions involving partial differential equations as well as large-scale optimization problems.

Scale of resources commonly used for production runs? PETSc can be run at any scale: from
a laptop to a cluster to the largest resources available at ALCF, NERSC, and OLCF.

Supercomputers regularly used? Most instances of PETSc on supercomputers are run by our users.
User feedback suggests regular use on Edison, Hopper, Mira, Sequoia, Stampede, and Titan.

Libraries/tools for prototyping? PETSc is developed using standard free open source development
tools, such as GNU Emacs, Git, and Valgrind.

Libraries/tools for production science campaigns? PETSc is itself a library for production science
campaigns for a variety of domains, including materials science, nuclear engineering, subsurface flow, and
magnetic fusion energy.

Describe efforts to develop code (application, library, etc.) portable across diverse archi-
tectures. The performance of PETSc depends primarily on good use of memory bandwidth, which is
typically less sensitive to architectural differences than applications limited by the rate of floating point
operations. We evaluated the use of threads in addition to MPI, but our performance evaluations have
not shown any advantage over a pure (“flat”) MPI approach. Consequently, threading support in PETSc
has been reduced to offer facilities for interfacing multithreaded user code with PETSc.1

1See companion whitepaper.

1



Where were the abstractions? PETSc employs data encapsulation via object oriented techniques.
Memory encapsulation is achieved via MPI, which means that each process (stream of control) has by
default access to only its memory regions; any sharing of memory must be explicitly enabled. This
encapsulation model is different from thread parallelism, where by default all threads have access to all
memory in a common memory region.

How much code re-use was possible? If something was not possible, please describe why.
Code reuse is achieved by providing composable components in PETSc and by not relying on excessive
code generation through the compiler, as would be the case with extensive C++ template techniques.
This approach results in relatively small binaries, which are in turn more cache-friendly.

What successes have you had with performant code across difference architectures? Appli-
cation codes based on PETSc perform well on a broad range of HPC architectures. PETSc’s approach
to composable solvers enables users to investigate the design space of composable linear, nonlinear, and
timestepping solvers for complex multilevel, multidomain, multirate, and multiphysics problems, with-
out making premature choices about algorithms and data structures. Thus, at runtime users can select
particular data structures and algorithms to exploit problem-specific knowledge and machine-specific
characteristics.

Were the same algorithms applicable at all across the architectures? In many cases, higher-
level algorithms apply across various architectures, while lower-level data structures may be customized.

What approaches did you reject and why? Because of the object-oriented nature of PETSc,
experiments with C++ have been made, but we ultimately switched back to C because of flexibility
and maintainability reasons. Also, experiments with threads (OpenMP, pthread) have not shown any
performance gains over a flat MPI model. In the interest of a maintainable code base, thread-related
code has been reduced to a minimum.

What is your greatest fear going to exascale for application portability and functionality?
The PETSc team has no fear of going to exascale, just as we have had no fear of going to petascale in
the past.

Acknowledgments
The authors were supported by the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research under Contract DE-AC02-06CH11357.

References
[1] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,

W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and
H. Zhang, PETSc Web page. http://www.mcs.anl.gov/petsc, 2014.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism
in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser Press, 1997, pp. 163–202.

Government License. The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

2

http://www.mcs.anl.gov/petsc

