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Q: How many developers are involved and how is the development structured? (co-located team, 
post-docs, community contributions, etc.)  
 
A co-located team of 5 (+ 2 post-docs) and many contributors 
 
Q: Language: Fortran 77, C 
 
Q: Lines of code: Several million lines of code 
 
Q: Primary methods:  
 
Gaussian-basis Density Functional Theory  
Time-dependent Density Functional Theory 
Plane-wave Density Functional Theory 
Many-body perturbation theory 
Coupled Cluster 
Multi-scale approaches (QM/MM, embedding methods) 
 
Q: Types of problems/domains/science application problems 
 
NWChem addresses a wide range of computational chemistry problems including atmospheric 
chemistry, biochemistry, catalysis, and energy conversion vs. energy storage. 
 
Q: Scale of resources commonly used for production runs 
 
Depending on usage needs, production runs range in scale from desktops to leadership class 
computing facilities. In large-scale user facilities, runs can vary in scale from single node to 
several hundred thousand cores.  
 
Q: Supercomputers regularly used 
 
EMSL Cascade, NERSC Edison, OLCF Jaguar/Titan, TACC 
 
Q: Libraries/tools for prototyping and production science campaigns 
 
Both prototyping and production runs employ the same set of libraries and tools: blas, scalapack, 
Global Arrays, MPI, OpenMP/OpenACC, and CUDA. 
 
Q: Describe efforts to develop code (application, library, etc.) portable across 



diverse architectures.  
 
Overall code builds on MPI/GA/OpenMP and is portable across compute platforms. Compute-
intensive parts are either OpenMP loops or calls to optimized libraries such as blas and lapack.  
Further, whole-program optimizations (operation minimization, communication minimization, 
etc.) are done through code-generation and topology-aware algorithm design. 
 
Q: Where were the abstractions? 
 
One-sided communication, global arrays, tensors, tensor contraction expressions, multi-
dimensional FFTs, parallel eigen solvers, etc. 
 
Q: How much code re-use was possible? If something was not possible, please describe why. 
 
We are working towards combining an evolutionary and revolutionary approach to preparing the 
code for future platforms. The evolutionary approach includes OpenMP and data-flow 
annotations that expose additional information to be exploited by parallel programming models 
while preserving the base semantics of the algebraic operations. The revolutionary approach 
involves the design of new algorithms and abstractions that enable runtime introspection and 
adaptation. These new algorithms and implementations are being designed in an incremental 
fashion to ensure correctness at every step of the development process.  
 
Q: What successes have you had with performant code across difference architectures? Were the 
same algorithms applicable at all across the architectures? 
 
We have had considerable success with achieving good performance across multiple 
supercomputing platforms. This is evidenced by the fact that NWChem had the first quantum 
many-body codes that scaled to full machine scales and utilized NVIDIA GPUs and Intel MICs.  
However, we expect additional effort for the upcoming supercomputing platforms due to deeper 
memory hierarchies, continued increase in compute-to-communication and compute-to-memory 
ratios, and changes in the nature of compute resources (heterogeneity and wider SIMD units). 
 
Q: What approaches did you reject and why? What was the leading contender rejected? 
 
While attractive, we found that end-to-end code generation precluded evolutionary development, 
correctness testing, and incorporation of optimizations based on expert knowledge. Therefore, 
we are pursuing a more evolutionary approach. 
 
Q: What is your greatest fear going to exascale for application portability and functionality? 
 
Beyond performance challenges, the most fundamental challenge is sustained funding. Over the 
years, we have made significant advances in our understanding of the algorithms required to 
efficiently implement the key methods. These ideas have been prototyped and published in peer-
reviewed venues. However, securing sufficient funding to translate these ideas and prototypes 
into production quality implementations has been a major challenge.  
 


