
NAMD Application Whitepaper James Phillips, University of Illinois

A. How many developers are involved and how is the development structured? (co-located
team, post-docs, community contributions, etc.)

NAMD has two dedicated full-time developers in Klaus Schulten’s NIH center at Illinois. Two full-
time developers are dedicated to the visualization and analysis program VMD, and two additional
full-time developers focus on synergistic development between NAMD and VMD for flexible fit-
ting of cryo-electron microscopy data, enhanced sampling methods, and parameterization of small
molecules. Outside collaborators aid in NAMD method development for free energy calculations
and multiple-copy simulation methods. NAMD parallel scaling and portability goals drive many
activities of Laxmikant Kale’s Illinois Parallel Programming Lab, for which the NIH center sup-
ports three CS graduate students. Technical assistance for GPU acceleration is provided through
the OLCF Summit CAAR program and NVIDIA, Xeon Phi kernels have been contributed by Intel,
and network and POWER optimizations have been contributed by IBM.

B. Where relevant, please discuss:

1. Language:C++, Charm++, CUDA, Tcl.

2. Lines of code:NAMD is implemented in just under 200,000 lines of C++.

3. Primary methods:NAMD supports classical molecular dynamics simulations, most commonly
of all-atom models with explicit solvent and periodic boundary conditions with PME full electro-
statics in an NPT ensemble, although coarse-grained models, implicit solvent, and non-periodic or
semi-periodic boundary conditions are also supported. CHARMM and similar force fields are sup-
ported, including the Drude polarizability model. Built on this foundation are a variety of features
for steering simulations, including the ability to define collective variables as control parameters for
restraints or conformational free energy calculations. Also supported are alchemical free energy
calculations and methods for accelerating sampling, including user-customizable multiple-copy
algorithms for parallel tempering and conformational or alchemical free energy calculations.

4. Types of problems/domains/science application problems:NAMD supports mainstream biomed-
ical research into the dynamics of cellular processes at atomic and sub-nanosecond resolution not
achievable by experimental methods, and are used typically hand-in-hand with cryo-electron mi-
croscopy imaging and other experimental techniques. The largest NAMD simulations currently
encompass entire viruses and cellular organelles.

5. Scale of resources commonly used for production runs:The largest simulations employ several
thousand nodes on leadership machines. Smaller simulations use hundreds or fewer.

6. Supercomputers regularly used:NCSA Blue Waters, OLCF Titan, NERSC Edison, TACC
Stampede, ALCF Mira, NICS Darter, SDSC Comet.

7. Libraries/tools for prototyping:None.

8. Libraries/tools for production science campaigns:Charm++, FFTW, Tcl.

1



NAMD Application Whitepaper James Phillips, University of Illinois

C. Describe efforts to develop code (application, library, etc.) portable across diverse archi-
tectures.

We must address with NAMD high-end and low-end platforms, both with and without NVIDIA
GPUs or Intel Xeon Phi coprocessors, and with x86_64, POWER, ARM, or self-hosted Xeon
Phi CPUs. We do not see any future alternative for programming NVIDIA GPUs that will be
as well-supported as CUDA, but OpenMP 4.0 SIMD directives provide at last a standard cross-
platform means of reliably accessing vector instructions. These SIMD directives will be most
critical on non-GPU-accelerated machines, which will predominantly have x86_64 and/or Xeon
Phi processors, both targets of the Intel compiler. Hence we will first write OpenMP 4.0 SIMD
kernels vectorizable by the Intel compiler, and only later address ARM and POWER performance
for those kernels that are not offloaded to the GPU via CUDA. We will use identical data structures
between Xeon Phi CPUs and offload coprocessors, and also other CPUs and GPUs whenever
reasonable, using modern C++ features to keep as much code in common as possible.

D. Where were the abstractions?

Charm++ provides abstractions for migratable objects and asynchronous methods with a unified
data/task parallel programming model. The Charm++ adaptive runtime system has optimized
network layers for every major modern network type.

E. How much code re-use was possible? If something was not possible, please describe why.

All CPU code is re-used completely, except for a few parts written in Intel or IBM vector intrinsics.

F. What successes have you had with performant code across difference architectures? Were
the same algorithms applicable at all across the architectures?

NVIDIA has maintained excellent performance consistency across multiple generations of GPUs.
Xeon Phi offloading is a clone of CUDA offloading, but the actual offloaded code is non-portable
and completely different, closer in design to the CPU kernel.

G. What approaches did you reject and why? What was the leading contender rejected?

We do not see any future alternative for programming NVIDIA GPUs that will be as well-supported
as CUDA, hence no OpenCL, OpenACC, or OpenMP 4.0 offloading. ISPC looks promising but is
not a priority for Intel, and is not a standard like OpenMP 4.0 SIMD.

H. What is your greatest fear going to exascale for application portability and functionality?

That optimization via architecture-specific intrinsics will continue to be recommended by proces-
sor vendors. Such intrinsics are not even future-proof for the same vendor.

2


