
Multiresolution Adaptive Numerical Environment for Scalable Simulation
(MADNESS)

Robert J. Harrison (BNL, rharrison@bnl.gov)
Edward Valeev (Virginia Tech, evaleev@vt.edu)
George I. Fann (ORNL, fanngi@ornl.gov)
Nichols A. Romero (ANL, naromero@alcf.anl.gov)
Álvaro Vázquez-Mayagoitia (ANL, vama@alcf.anl.gov)
http://github.com/m-a-d-n-e-s-s/madness

Overview Description and Impact: MADNESS is a general purpose numerical environment for
deploying advanced scientific algorithms on petascale and post-petascale architectures. It emphasizes
both productivity and performance. Presently, there are MADNESS applications for chemistry (molecular
DFT, TDDFT, CIS), atomic and molecular physics (atto-second and infrared lasers), nuclear physics and
exotic nuclei (nuclear HF, DFT, TDDFT), and nanophotonics (excitations). These methods generated
much excitement in chemistry, material science and nuclear physics by providing a common framework
linking many diverse domains, including signal processing, data compression, and quantum physics.

The MADNESS framework has three layers: a parallel runtime, a numerical framework for
integrodifferential calculus, and end-user applications. MADNESS’ numerical library guarantees
precision and “mathematically fast O(N)” computation through the use of multi-resolution analysis
(MRA) in conjunction with compact nonlinear multiscale approximations for accurate solution of coupled
1-6D integral and differential equations (the promise of the MADNESS numerical framework spurred the
development of three competing codes adopting our methodology in Europe and Japan) The MADNESS
parallel runtime lowers the complexity of composing algorithms on irregular data by supporting latency-
tolerant task-centered composition so the application developers can focus on rapid development of
production-level parallel scientific or engineer applications.

The advanced features of MADNESS parallel runtime are also a good match for other applications
dealing with irregular data; a block-sparse tensor library TiledArray successfully uses MADNESS
runtime to support scalable block-sparse tensor algebra and its applications in predictive molecular
electronic structure, such as the coupled-cluster method.

Developer Community and Infrastructure: There are 20 developers for MADNESS with a wide range
of expertise and at different career stages (grad. students, post-docs, staff scientists, and professors). The
main teams are located at Argonne National Laboratory, Brookhaven National Laboratory/Stony Brook
University, Virginia Tech, and Humboldt University of Berlin. The development of our code is openly
hosted on GitHub. We use standard GitHub project management tools (wikis, issue trackers, releases) as
well as Travis-CI, an integrated cloud-based continuous integration service for automated basic code
verification. We hold monthly open videoconferences via Google Hangouts to discuss new code
development directions. We also hold semi-annual face-to-face developer meetings at one of the U.S.
based institutions. In 2015, a developer’s version of MADNESS was released and are now planning for a
production science release. MADNESS is now included a package in release of Debian Linux.

mailto:naromero@alcf.anl.gov
http://github.com/m-a-d-n-e-s-s/madness

Computational Requirements: MADNESS presently runs on DOE leadership computer resources at the
scale of over 100,000 cores. The computational kernels (small dense, sometimes low-rank, matrix
operations) are ideally suited to massively-threaded, SIMD architectures with caches, but aggregation and
new algorithms are required for best performance on GPGPUs and accelerators. MADNESS heavily
relies upon efficient remote method invocation and remote memory access and are well suited to systems
with compact memory, and the computation on trees assists in shepherding data up/down a deep memory
hierarchy.

Programming model, language requirements, tools, and library dependencies: MADNESS is
written in C++2011 using a task-based programming model, similar to NAMD. The parallel runtime
library is responsible for managing task scheduling and placement as well as dependencies (futures) with
user enabled load and memory balancing. Presently, the MADNESS framework relies on MPI (DOE
funded), Pthreads or optionally the Intel© TBB library, and the Elemental parallel dense linear algebra
library (NSF funded). A pressing issue that impact us today is interoperability between distinct
programming models such as OpenMP, parallel BLAS, Pthreads, etc. Another difficulty is availability of
tools for collecting performance characteristics for a MADNESS application - no tools can handle our
massive threading or exclusive use of asynchronous communication to hide latency and communication
overhead. Moving forward, tools will be needed to support MPI + X + Y; where X might be OpenMP,
and Y is another programming model such as Intel© TBB. Lastly, we anticipate that we will need
transparent support for adaptive or extended precision, ideally in language form.

Methods and Algorithms: MADNESS employs MRA with an orthonormal multi-wavelet basis, and our
integro-differential equations solvers employ separated representations for efficient computation in higher
dimensions (routinely up to 6). Fast applications are possible by fast pre-tabulated multiscale
transformations. The underlying bases are discontinuous spectral elements, and it is routine to use basis
sets of order 6 to 10, and for time-dependent problems orders over 20 can be advantageous. For exascale
we need math/algorithm research to transition compact complex scattering, propagators and Green’s
function approximations, with angular scattering, from prototype to production, to enable comparison
and improved potentials between simulations and experimental data, directly connecting experiment,
simulation and theory -- direct calculations of cross-sections and comparison with experimental results,
including uncertainty analysis. MADNESS is unique in that it is able to solve integral equations which are
typically more mathematically well-behaved that their differential counterparts. We anticipate that
“standard” DFT iterative solvers may need to be revisited due to this difference.

Portability: MADNESS is written in C++ (the international 2011 standard is assumed), using only a
minimal number of external libraries (BLAS/LAPACK, a thread-safe MPI implementation, and POSIX
threads). For high-end multicore scalability the optional task queue implementation based on the Intel
Thread Building Blocks (TBB) framework is recommended; we are actively planning for future adoption
of standard task-based runtimes (and even higher-level abstractions like general DAG-based runtimes) to
improve portability and scalability.

Approaches rejected: A prototype implementation of the numerical layer and chemistry applications in
Python were successful proofs-of-principle, but performance was too low to be viable for production
calculations. There were also other issues with Python that made it unsuitable for a HPC environment.

Greatest fear in exascale era: A big concern on our exascale roadmap is the use of tier memory. The
APIs are ‘moving target’ and there are concerns about their portability.

