
HPCOR Application White Paper: HACC

Hal Finkel, Salman Habib, Katrin Heitmann, Adrian Pope

Background: HACC (Hardware/Hybrid Accelerated Cosmology Code) is an extreme-scale,
particle-based framework for cosmological simulations. HACC is designed to tackle science
issues underlying sky surveys including ACT, DES, DESI, Euclid, LSST, SPT, and WFIRST,
representing an investment in the billions of dollars by DOE, NASA, and NSF.

Development: HACC development began in 2008 as an entirely new design targeted from
the outset for future-generation extreme-scale systems. Current development effort is split
between the main HACC time-domain solver and its associated analysis framework Cosmo-
Tools. The work on the time-domain solver is primarily the responsibility of a team located
at Argonne with 4 staff members, one postdoc, and one graduate student. The same set of
people also contribute to CosmoTools along with others at Argonne (two postdocs, two stu-
dents) and at Los Alamos (2 staff members). It is important to keep in mind that everyone
mentioned has several other responsibilities, so they can only contribute fractions of their
time to the overall HACC effort.

HACC Information: HACC is designed to run on all current and future supercomputer
architectures at full-scale and very high performance levels. It was the first production
science code worldwide to achieve 10PFlops of sustained performance.

1. Language: HACC is written in C++/MPI+‘X’ where X refers to the node-level
implementation of HACC’s local force solvers (X = OpenMP, CUDA, OpenCL, –).

2. Lines of Code: HACC currently consists of approximately 195 thousand lines of code
(including CosmoTools and all multi-architecture solvers).

3. Primary Methods: For its gravity solver, HACC uses a hybrid particle/grid ap-
proach based on a sophisticated spectral particle mesh method coupled to a number
of high-performance local force solvers using different algorithms that are mapped to
the underlying architectures. It has a custom high performance parallel FFT and a
unique particle overloading method for communication avoidance that enables it to
overcome the mismatch between network bandwidth and node-level performance, as
well as to significantly enhance portability. A new SPH algorithm (CRKSPH) will be
incorporated in the local force solvers for handling cosmological hydrodynamics. The
CosmoTools library associated with HACC provides efficient parallel analysis tools for
both in situ and offline modes. HACC has its own custom high performance I/O library
that runs at a very high fraction of the available system bandwidth.

4. Application Domain: Sophisticated, large-scale simulations of structure formation
are essential components of modern cosmology. HACC simulations address a multitude
of tasks: predictions for many different cosmological models to enable constraints
on cosmological parameters, investigating astrophysical and observational systematics
that could falsely mimic scientific signals, enabling careful calibration of errors, testing,
optimizing, and validating observational strategies, and finally, exploring new and
exciting ideas that could either explain puzzling aspects of the observations or help

Page 1



to motivate and design the implementation of new types of cosmological probes. The
simulations therefore shed light on some of the deepest puzzles in all of physical science.
The methods developed within HACC can be applied to a number of other domains.

5. Scale of Resource Use: HACC scales essentially perfectly on current systems. It
has been run at or very near full-scale on Mira, Titan, and Sequoia – on the BG/Q
systems, to 750K+ and to 1.5M+ cores, and on Titan to 16K+ GPU-enhanced nodes.
Large-scale runs have been carried out on Edison and Hopper at NERSC. Fractional
machine utilization in production varies from 10− 100% for a single run.

6. Supercomputers Used: Primary usage – Mira, Titan (ALCC, INCITE); secondary
usage – Edison, Hopper (ERCAP). Early science projects on Cori, Summit, Theta.

7. Libraries/Tools for Prototyping: Python, Matlab, MC2 (Fortran/MPI pilot code),
GDB, Valgrind, Darshan, HPM.

8. Libraries/Tools for Production: MPI and non-distributed FFTW (or a compatible
provider, e.g., IBM’s ESSL and Intel’s MKL). Some GPU-targeted analysis code uses
CUDA and NVIDIA’s Thrust library.

Portability: From the outset, HACC was designed for portability – to deal with diverse
architectures and programming models, as well as respond to disruptive changes in the future.
Abstractions: HACC incorporates multiple algorithms, allows them to be optimized for the
architecture at hand, and places minimal reliance on external resources that can potentially
limit these abilities. The strategy follows a two-level paradigm – the higher level of code
organization is grid-based, interacting with particle information at a lower level of the com-
putational hierarchy. HACC uses a hybrid parallel algorithmic structure, splitting the grav-
itational force calculation into a specially designed grid-based long-range spectral particle-
mesh component that is essentially architecture-independent, and an architecture-tunable
particle-based short-range solver. The flexibility to respond to different nodal architectures
is built into the short-range solvers. Significantly, a unique mechanism for communication-
avoidance is built into HACC’s design using particle replication (‘overloading’); not only
does this provide performance benefits, it enhances portability by isolating the short-range
solvers from HACC’s ‘universal’ MPI-based communication layer. The access to multiple
algorithms within the framework enables careful error control and verification of results.
Code Re-Use: By design, the short-range solvers are essentially “plug-in” modules into the
framework, in this sense, there is very significant code re-use.
Performance: We have had excellent success across different architectures, attaining very
high performance levels by tuning the algorithms to the architectures. (2012 and 2013
Gordon Bell Award finalist for performance results on Mira, Sequoia, and Titan.)
Rejected Approaches: We rejected adaptive mesh refinement (AMR) because of the asso-
ciated data structure complexity, memory overhead, portability, and performance concerns.
Exascale Issues: Our primary concerns include the memory access hierarchy and inter-
node network performance. However, we do not believe that there any “show-stoppers” in
implementing the HACC approach on exascale systems.
Primary Reference: S. Habib et al., “HACC: Simulating Sky Surveys on State-of-the-Art
Supercomputing Architectures”, arXiv:1410.2805 [astro-ph.IM]; New Astron. 42, 49 (2016)

Page 2


