
Guiding Institutional Scientific Applications
Toward Next-Generation Architectures

Erik W. Draeger, LLNL

Overview
In response to a critical gap that currently exists in the transfer and dissemination of
hands-on advanced architecture expertise to code teams across NNSA, the Advanced
Architecture and Portability Specialists (AAPS) team was recently formed at Lawrence
Livermore National Laboratory. The team consists of a core group of 8-10 computational
and computer scientists who specialize in designing and optimizing parallel codes to take
full advantage of both current and next generation supercomputers. The primary mission
of the team is to engage ASC and Tri-Lab code groups and offer expert, hands-on
assistance to improve the performance and scalability of their applications on advanced
architectures, rather than relying upon each code team to independently stay abreast of
the latest developments in architecture, programming models and kernel optimization
needed to make efficient use of new hardware. Engagements are tailored to the needs of
each code team and range from short-term problem solving (e.g. kernel tuning) to
embedding of AAPS team members within code teams to assist with code restructuring
or evaluation of new programming models or algorithms via proxy apps. Direct
engagement with multiple code teams allows us to identify common needs and
disseminate innovative solutions and ideas across Tri-Lab efforts.

Single-Physics Codes
I maintain and develop multiple highly scalable single-physics codes:

• Qbox (qb@ll branch), Density Functional Theory

• ddcMD, classical molecular dynamics

• Cardioid, cardiac electrophysiology

• HARVEY, Lattice Boltzmann fluid dynamics for circulatory modeling.
All of these codes are written in C/C++ and use MPI+OpenMP. In addition to running on
large x86_64 linux clusters, all four codes have been run on the full Sequoia Blue Gene/Q
machine at LLNL (98,304 compute nodes, 1.57 million cores) and demonstrated
excellent scalability and parallel efficiency. Qbox and Cardioid have also demonstrated
over 50% of sustained peak floating point performance on Sequoia.

Thus far, portability has been achieved through the use of libraries and highly tuned
kernels, which have to be rewritten and/or retuned every time a new hardware platform
becomes available. In the case of Cardioid, we observed a significant performance
improvement on SIMD architectures like BG/Q by tuning our algorithms and data
structures to take full advantage of available vectorization rather than simply minimizing
total floating point computation. We anticipate that this approach is going to be

universally necessary for most codes hoping to achieve portable performance on the next
generation of machines.

Multi-Physics Codes

As team leader of the AAPS team, I am also working closely with multiple LLNL code
teams to prepare their codes for heterogeneous architectures like the Sierra machine,
scheduled to be delivered in 2017. These are large, complex codes (hundreds of
thousands to millions of lines of code), written in Fortran, C and C++ and designed to be
interoperable with each other to solve complex multiphysics problems. The code teams
range from a handful to dozens of computer scientists and computational physicists.

The key challenge to porting these codes to next-generation (and ultimately exascale)
architectures is going to be (a) adapting the underlying data structures to allow for large
amounts of vectorization, (b) exposing sufficient parallelism to take advantage of GPUs
and other accelerators, (c) minimizing data movement and communication, and (d)
devising a sufficiently robust programming model to allow one to tune algorithms and
loops to a given hardware configuration without extensive code modification. We
anticipate applying many of the lessons learned in porting our scalable single-physics
codes to Blue Gene/Q, but expect to benefit from the experiences of the broader
community who have already tackled many of these issues on heterogeneous GPU
machines.

	

