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• How many developers are involved and how is the development structured? (co-located team, 

post-docs, community contributions, etc.): 5-6 core developers co-located, 5-10 additional 
contributors on- and off-site. 

 
• Language: C++ with Fortran for some kernels; Python driver option. 
 
• Lines of code: ~50K 
 
• Primary methods: discrete ordinates solver for steady-state Boltzmann transport equation using 

Krylov solvers and eigensolvers with the KBA sweep algorithm. 
 
• Types of problems/domains/science application problems: reactor core analysis (neutronics), 

radiation shielding, nuclear forensics and radiation detection. 
 
• Scale of resources commonly used for production runs: up to full-system runs on leadership-class 
systems for durations of several hours. 
 
• Supercomputers regularly used: ORNL Titan 
 
• Libraries/tools for prototyping: N/A 
 
• Libraries/tools for production science campaigns: Libraries: MPI, Trilinos, BLAS/LAPACK, 

SILO/HDF5, CUDA.  Other: Python, VisIT, TriBITS, CMake, CDash. 
 
• Describe efforts to develop code (application, library, etc.) portable across diverse architectures: 

(1) a new algorithm was implemented natively in Denovo to expose parallelism in energy group 
for use on accelerators—this was immediately portable across all architectures via MPI; (2) the 
3D sweep algorithm, the primary code hot spot, was rewritten to better control the data access 
patterns for effective use of accelerators.  Access to CUDA is hidden behind façade classes or 
functions to increase portability and facilitate future porting to OpenACC and/or OpenMP 4/5. 

 
• Where were the abstractions? Abstractions for the sweep code to access the accelerator using 

CUDA are stored in separate files in the CUDA sweeper directory.  These abstractions allow the 
same code to execute on either CPU or accelerator.  Abstractions include: access to the hardware 
thread hierarchy; thread synchronization; memory management on host and accelerator; 
asynchronous data transfer to/from accelerator in CUDA streams; access to accelerator 
scratchpad memory; manipulation of arrays that are mirrored between host and accelerator.  
Higher level abstractions concern: mapping the science problem to the compute nodes, managing 
on-node and off-node communication, and manipulating multidimensional arrays. 

 
• How much code re-use was possible? If something was not possible, please describe why. All 

code outside of the sweeper was reused.  The sweeper was entirely rewritten because: 1) the data 
access pattern of the original code was not optimized for host-accelerator transfer and for 



minimized main memory access by the accelerator, and changing this would require permuting 
the call tree and likely modifying the class structure significantly; 2) the classes were not set up 
for minimized use of memory, and since the algorithm performance on an accelerator is to large 
extent register-file-size-limited, this is a significant issue for performance. 

 
• What successes have you had with performant code across difference architectures? Were the 

same algorithms applicable at all across the architectures? A sweep miniapp, a companion code 
to the Denovo CUDA sweeper, has been developed, and this code runs with what would be 
considered good performance (and similar percent of peak flop rate) on both NVIDIA GPUs 
(CUDA) and Intel Phi (OpenMP, Intel simd directives), with most of the code in common 
between both architectures.  One issue for portability is that the optimal size of an accelerated 
code region depends on the architecture: the latency of a CUDA kernel launch favors a larger 
kernel size, but the Intel compiler often fails to vectorize larger loops, and the latency for 
entering a vector region on Intel hardware is low; thus GPUs favor large kernels, and Intel Phi 
favors smaller simd loops.  Another problem is that function call APIs and directives are 
fundamentally different coding styles that cannot be easily consolidated: calls to CUDA can be 
hidden in abstracted functions, but simd directives for decorating loops must be scattered through 
the code and cannot be isolated for the purpose of separation of concerns.  A higher level of 
abstraction would be helpful if it does not commit the past failure of being too restrictive and not 
expressive enough to represent new unforeseen usage cases while also allowing a migration path 
for legacy codes. 

 
• What approaches did you reject and why? What was the leading contender rejected? At the time 

the code was originally developed, directives were very immature, so that was not an option.  
The situation is changing today, though even now the compilers are not mature and there may be 
project risk in relying solely on them.  OpenCL was not chosen due to not supporting GPU 
features as well as CUDA.  Today, the primary objections to OpenCL would be: too 
cumbersome, too many device-specific optimizations required, and inadequate vendor support. 

 
• What is your greatest fear going to exascale for application portability and functionality? In 

general terms, the node architectures of all major vendors are converging: hyperthreading, simd 
lanes, multi/manycore, deep memory hierarchies, NUMA, NVRAM.  However, the small details 
can be different enough to result in developer headaches for creating performance portable code, 
for example: different ratios of performance speeds and feeds related to hardware characteristics, 
that might result in different code structuring; different characteristics of parts of the memory 
hierarchy, e.g., user-managed or system-managed access (addressable memory, direct mapped 
cache, set associative cache, paging, I/O-style block transfer calls, etc.); lack of vendor agreed-
upon standards, e.g., for NUMA memory access or using NVRAM (though at the same time it is 
of limited value to standardize usage of hardware features that might be transient, if this is in fact 
the case); all these problems exacerbated by growing node complexity and requisite code 
abstractions that potentially interact nonorthogonally in complex ways.  The results of these are: 
difficult to maintain code; difficulty future-proofing code since the developer doesn’t know what 
new vital node architecture quirk is coming next; the need to write possibly large redundant code 
pieces for different architectures which defeats the purpose of trying to write portable write-once 
code. 

 


