
HPCOR 2015 White Paper – Clang/LLVM

Hal Finkel
Leadership Computing Facility
Argonne National Laboratory

LLVM1, winner of the 2012 ACM Software System Award, has become an integral part of the
software-development ecosystem for optimizing compilers, dynamic-language execution engines,
source-code analysis and transformation tools, debuggers and linkers, and a whole host of
programming-language and toolchain-related components. Now heavily used in both academia and
industry, where it allows for rapid development of production-quality tools, LLVM is increasingly used
in work targeted at high-performance computing. Research in and implementation of programming-
language analysis, compilation, execution and profiling has clearly benefited from the availability of a
high-quality, freely-available infrastructure on which to build. Notable open-source examples include
Argonne's bgclang project2 (providing a modern Clang/LLVM-based toolchain for the IBM BG/Q
supercomputer) and Julia3 (a just-in-time-compiled scripting language designed for science and
engineering applications). In addition, almost all hardware vendors have started to integrate at least
parts of Clang/LLVM into their commercial compiler toolchains4. DOE, both directly and indirectly, is
investing significantly in Clang/LLVM-based software for upcoming supercomputing systems.

The LLVM project contains several projects in addition to the core LLVM libraries themselves,
including Clang (the C/C++ frontend), libc++ (a C++ standard-library implementation), and runtime
libraries for the sanitizer debugging tools and OpenMP. LLVM itself consists of nearly 2 million lines
of code, nearly all of which is written in C++11. Clang consists of nearly 1.5 million lines of code, also
mostly written in C++11, and other associated subprojects contains millions more. The development
repositories are updated with thousands of commits per month authored by hundreds of contributors,
some individuals, but many more from industry and academia. Quality and consistency across this
large project is maintained by a system of code reviews (both pre- and post-commit) and an automated
testing infrastructure. The project policies are designed to encourage long-term maintainability and
developer productivity, notably requirements for code reviews, regression tests, professional decorum,
and the preference to “revert to green” (reverting breaking changes, no matter how minor) instead of
“fixing forward.”

LLVM is a retargetable compiler infrastructure, supporting all major supercomputing architectures
(x86, NVIDIA, PowerPC), in addition to other architectures, such as ARM, that might be relevant in
the future. A strong advantage of LLVM is its well-defined intermediate representation (IR). The IR is
the target-independent language generated by frontends for higher-level languages, but is itself a well-
defined, and well-documented, language separate from any other project. Most of the optimizations in
LLVM work by transforming less-optimal IR into more-optimal IR, enabling composibility and
flexibility in how LLVM is used. The IR is the primary mechanism used by LLVM to abstract away the
details of compilation from the tools built on top of it. Deep inside the code generator, there are other
layers of abstraction which aid in the development of backends for different architectures. As a result,
even though mature backends have lots of code, this is dwarfed by the common code in the rest of the

1 http://llvm.org
2 https://www.alcf.anl.gov/user-guides/bgclang-compiler
3 http://julialang.org/
4 To name a few examples: IBM using Clang (http://www-03.ibm.com/software/products/en/xlcpp-linux), Intel using

Clang (https://software.intel.com/en-us/intel-inde), and NVIDIA using LLVM (https://developer.nvidia.com/cuda-llvm-
compiler)

http://llvm.org/
https://www.alcf.anl.gov/user-guides/bgclang-compiler
http://julialang.org/
http://www-03.ibm.com/software/products/en/xlcpp-linux
https://software.intel.com/en-us/intel-inde
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler

project.

Uses of Clang and LLVM in HPC are increasing rapidly, both in open-source and vendor-provided
software. Clang and LLVM themselves form an open-source C++ compiler, now with OpenMP
support, that is beginning to see use within HPC environments. Clang, in cooperation with the MPICH
MPI implementation, was the first compiler to feature MPI-specific warning messages5. These were
first deployed as part of Argonne's bgclang project, but soon became available by default in both
projects. Through the efforts of Intel, and now IBM, OpenMP support has come to Clang/LLVM, and
with it, Clang/LLVM serve as a fully-viable compiler for modern HPC applications. LLVM is also
being used directly by a number of different projects in order to offer just-in-time (JIT) compilation
underneath higher-level programming languages. Prominent examples include Julia and Numba6 (a
python-based numerics library). In addition, some HPC applications have started to use LLVM directly
in order to JIT numeric kernels customized to localized parameters and boundary conditions (USQCD's
QDP project7, for example). Many HPC vendors have started integrating parts of Clang/LLVM into
their compiler toolchains, and some have begun to advertise this publicly. Reusing these high-quality,
open-source components, and concentrating on adding value in more targeted areas, allows vendors to
produce higher-quality products. Examples include IBM, Intel, NVIDIA and Cray8. Some of these
projects were detailed at last year's LLVM in HPC workshop (held in conjunction with SC'14), and
more will be detailed at this year's LLVM in HPC workshop (held in conjunction with SC'15)9.

Going forward, the largest challenge will be maintaining vendor buy-in to the community development
process and community cohesiveness. Portability of LLVM-based tools to exascale systems will likely
depend on vendor contributions. Fortunately, a combination of sustained pressure (as customers), and
direct investment, can mitigate this risk over the long term.

5 Gribenko, Dmitri, and Alexander Zinenko. "Enabling Clang to statically check MPI type safety." International

Conferences on High Performance Computing (HPC-UA) (October 2012). 2012.
6 http://numba.pydata.org/
7 F. T. Winter. “Progress Report on QDP-JIT.” USQCD Software Meeting 2014.
8 For IBM, Intel and NVIDIA, see earlier footnote. For Cray, see: Nathan Wichmann, et al. “Early Experience using the

Cray Compiling Environment.” CUG 2009 Proceedings.
9 http://llvm-hpc-workshop.github.io/ and http://llvm-hpc2-workshop.github.io/

http://numba.pydata.org/
http://llvm-hpc-workshop.github.io/
http://llvm-hpc2-workshop.github.io/

