HPCG on the K computer

‘J

K.Kumahata, K.Minami, N.Maruyama

RIKEN Advanced Institute for

Computational Science

Tuesday, March 25, 2014 K computer

P. RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE
RIKEN

po éx Today’s menu

RIMEN « computer

* Weak scaling measurement on the K computer
— Performance
— Communication costs trend

— Hot spots

* Performance improvement on a single CPU

— Continuous memory arrangement

— SYMGS multi-threading
e Our requests for the HPCG

The ASCR HPCG Workshop

Weak scaling measurement on the K computer

The ASCR HPCG Workshop

ﬁ éx Conditions

RIMEN « computer

e Code
— As s

— Modified two kinds variables of “global int_t” and
“local_int_t”, for large number of processes

e Compile option

— Typical compile option on the K

e Case

— Local domain dimension was 104x104x104.
(by default hpcg.dat)

— Number of CG sets was fixed 5 for test.

R3.

RIKEN

Performance

100000
Numt?er of CG Sets 5 15222GFLOPS
Iteration / CG 50 (0.36% PEAK)
10000 -
9835GFLOPS
= (0.23% PEAK)
(@)
— 1000
£
& —e—by HPCG
O 100 —&— by Profiler
-
. A meeae Ideal
(U]
10
Num. of Procs. increased to 4096 times. Efficiency
GFLOPS increased to 4040(or 4050) times. 98%
1 T T T T T 1
8 32 128 512 2048 8192 32768
8 threads/process Number of processes (in log) Average of 3 times |

* Measured GFLOPS from 8 processes to 32768 processes
* by HPCG Measured by HPCG code (from YAML file)
* by Prof. Measured by profiler

*Good parallel performance was obtained until 32768 procs.

The ASCR HPCG Workshop

GFLOPS difference between HPCG
and Profiler is 1.5 times.

Nz

Cause of it is difference of floating
point operation counting way.

Difference of FLOP counting way

RIMEN « computer

By profiler
* All FLOP in measurement range will be counted.

* Division and SQRT are counted as multiple FLOP.

By HPCG
* Major FLOP of theoretical necessary will be counted.
* Minor FLOP was ignored.

-% =CG(4, b, %,, £, max)

— T over10FLOP

~X =SYMGS(4, b, X) ForwardLoop

SPMV () L. for (1=0; i<nrow; 1++){
WAXPBY () .FLOP.ls‘;.gr:orecil ..
in an initial par

?giﬁiiﬁ?ci<max && !conv; k++){ for(3=0; j<nz[il]; J++){

MG(),) ! col = A.mtxIndL[i][7]
—_— 1 * .

e Cowﬂfd sum vallj] x[col];
WAXPBY () FLOP is counted - TR D —
SPMV () in iterations sum += x[1] . lag[l]’
... sum = sum / Diag[i];

) J Ignored

The ASCR HPCG Workshop

ﬁ Y Communication cost trend

RIKEN

3.5% Ax4x4
Procs. N A ——o
3.0% JNN/
X 25% /\-\ 8x8x8 16x16x16
-
7S Procs. Procs.
S 2.0% 4 N
O 2.0% Total communication cost was almost 6%
©
+— .
© 15% » ——Neighbor
Q 2%2x2 —&-Allreduce
O 1.0% - Procs
=
©
o
0.5% .
When job queued, Process shape was match for the shape by
GenerateGeometry().
0.0% T T T T 1
8 32 128 512 2048 8192
Number of processes (in log) Average of 3 times

* MPI cost ratio to the total CG running cost by profiler

* Total communication ratio was saturated into about 6% with 512 processes or

more.
* Study has been continue.

P. ~ ¥ Hot spots

RIMEN « computer

The ASCR HPCG Workshop

4.43

ExchangeHalo

33-109

ComputeSPMV_ref
59-70 ComputeSYM

54-103

In case of
8192 procs.

2850 61.64%

GS_ref

Procedure Lines
B ComputeSYMGS_ref 54 - 103

B ComputeSPMV_ref 59 - 70
M ExchangeHalo 33 - 109
B ComputeDotProduct_ref 46 - 79
B ComputeWAXPBY_ref 53 - 55
B ComputeDotProduct_ref 61 - 63
1 ComputeRestriction_ref 49 - 51
= ComputeDotProduct_ref 56 - 58
ComputeProlongation_ref 46 - 49
m ComputeMG_ref 39 - 63
Other

* Procedures costs ratio to the total CG running cost by profiler
* 98% of total cost consists of major 4 procedures (including communication)

* Only 2 procedures occupy 90% of the total cost (only calculation)
* All cases of number of processes show such trend.

The ASCR HPCG Workshop

. 9
P. és Summary of weak scaling measurement

* Good parallel performance was obtained until 32768
processes.

— Number of processes increased to 4096 times.
— GFLOPS increased to 4050 times.
— Efficiency was 98%.

* We expect the MPI cost will be “acceptable” in furthermore
large processes.

— MPI cost ratio of furthermore large processes is under studying.

* 90% of total cost consist of major 2 operational procedures.

— We are trying to improve those procedures performance on a single
CPU first.

The ASCR HPCG Workshop

R% ’

RIMEN « computer

Performance improvement on a single CPU
Continuous memory arrangement

The ASCR HPCG Workshop

P, ¥ Discontinuous memory arrange

RIKEN

GenerateProblem.cpp (original)

108: // Now allocate the arrays pointed to
109: for (local int t i=0; i< localNumberOfRows; ++1i) {

110: mtxIndL[1i] = new local int t [numberOfNonzerosPerRow];
111: matrixValues[i] = new double [numberOfNonzerosPerRow] ;
112: mtxIndG[i] = new global int t[numberOfNonzerosPerRow];

=27

* Memory for storing a matrix rows is allocated separately in the
source.
* Each row information are arranged discontinuous.

—Memory Space
yop A.mtxIndL[nrow-1] A.mtxIndL[O]

A.matrixValues[0]
- (1-[

5 dV o A.mtxIndL[1] 27 local_int_t
7/ double - - A.matrixValues[nrow-1] A.matrixValues[1]

Discontinuousness is emphasized in this figure

The ASCR HPCG Workshop

ﬁ iy Continuous memory arrange

RIMEN « computer

Modified

108: // Now allocate the arrays pointed to

109: int size = numberOfNonzerosPerRow * localNumberOfRows;
110: local int t* templ = new local int t [size];

111: double* tempd = new double [size]l; Allocate once all
112: global int t* tempg = new global int t[size];

113:

114: for (local int t i=0; i< localNumberOfRows; ++1i) {

115: mtxIndL[1i] = & (tmpl[i*numberOfNonzerosPerRow]) ;
116: matrixValues[i] = & (tmpd[i*numberOfNonzerosPerRow]) ;
117: mtxIndG[i] = & (tmpg[i*numberOfNonzerosPerRow]) ;
118: }

‘ * Every row information are arranged continuously.
—Memory Space

A.matrixValues[0] A.matrixValues[1] A.matrixValues[nrow-1]

A.mtxIndL[0] A.mtxIndL[1] A.mtxIndL[nrow-1]

The ASCR HPCG Workshop

P. és Continuous memory arrange result

SPMV Memory L2 L1D L2
CASE Time Throughput Throughput Miss Ratio = Miss Ratio
(sec) (GB/sec) (GB/sec) (/Load, Store) (/Load, Store)
As s 71.429 25.99 25.72 9.59% 5.96%
Continuous 3.137 48.28 55.88 4.88% 4.13%
SPMV Time For SPMV called from CG directly,

running time, throughput and cache
miss ratio was measured.
As Is (except for called by MG)

Continuous memory arrangement

Cont. improved the memory throughput and
| the cache miss ratio.
0.0 2.0 4.0 6.0 8.0
Time [s] SPMV running time was decreased in

43%.
The ASCR HPCG Workshop

8 processes, 8 threads/process

R3.

RIMEN « computer

Performance improvement on a single CPU
SYMGS multi-threading

The ASCR HPCG Workshop

ﬁ és Ratio of loops cost, and loop type

RIKEN

Type Procedure Lines
SERIAL| ComputeSYMGS_ref 93 - 96
mQ0penMP ComputeSPMV_ref 67 — 68
SERIAL| ComputeSYMGS_ref 74 - 77
SERIAL| ComputeSYMGS_ref 86 — 100
SERTAL| ComputeSYMGS_ref 67 — 80
SERIAL| ExchangeHalo 88 - 91
25.35 9% =0penMP ComputeSPMV_ref 61 - 70
ComputeSYMGS_ref SERIAL| ExchangeHalo 100 - 104

74-77 0
Forward Loop 26.49 % OperMP ComputelAXPBY ref 55 — 55
Compuée;glg\/l V_ref = 0penMP ComputeDotProduct_ref 63 - 63

Other

29.02 %

ComputeSYMGS_ref
93-96

Backward Loop

As Is, 8192 processes

* The loops cost ratio to the total CG cost measured by profiler and loop running type
* SYMGS loops are not parallelized.

\

* SYMGS multi-threading is necessary.

The ASCR HPCG Workshop

P. és SYMGS multi-threading

RIMEN « computer

Ex) ComputeSYMGS ref () Forward loop

for (int 1i=0,; i<nrow; i++) {
double* curValues = A.matrixValues[i];
int* curlndices = A.mtxIndL[1i];
int curNZ A.nonzerosInRow[i];
double curDiag = matrixDiagonal [i] [0];

double sum = rv[i];
for (int J=0; j<curNZ; J++) {
int curCol = curlIndices|[]j];
sum -= curValues[j] * xv[curCol];
}
sum += xv[i] *curDiag;

xv[i] = sum / curDiag; Recurrencell

- Can’t parallelize

_/

* There are recurrences between load and store for the vector xv.
* Cannot be parallelized by just insert a directive.

* Itis necessary to separate load and store of same column by coloring.
The ASCR HPCG Workshop

P. éa Coloring 1/4

» 27 points stencil (using diagonal points)
* 8 colors required for avoiding the recurrences

for(int i=0; i<nrow; 1i++) {
..Innermost loop..

} Loop structure of SYMGS

; Modify for coloring

Add outer loop to iterate color
for(int ic=0; i<8; ic++){
Parallelize by directive
#pragma omp parallel for
for (int i=st; i<=ed ++) {
..Innermost loop..

}

Attention!!
In this time, we are using the structural

advantages of the test problem temporally!
8 colors

Of course, we have the correct coloring way.

The ASCR HPCG Workshop

ﬁ éx Coloring 2/4

RIMEN « computer

Corresponding to the coloring , memory accesses have been sequential by sorting
row information in the memory.

Information of Values [T T T T]-[] 27double
1 row of matrix | Column Indices [TTTT]-[] 27 local_int_t

"""""""
""""""""
........

..........

_Memory Space

Matrix
information

.......
""""""""
......

1 Coloring
- Memory Space
Matrix Row 4 [Row 6 Row o[l N |
information

l Sort to be continuous (Row 3 to Row 2, Row 7 to Row 3, ...)

- Memory Space
Matrix [Row i Row 2] Row 3 Rowa] -~ [[100 T 101 [102 [203] N2 N1 N
information

R3.

Coloring

RIKEN

3/4

Backward Loop

28.54%

ComputeSYMGS
144-147

24.75 %

ComputeSPMV
87-88

Forward Loop

27.68%

ComputeSYMGS
114-117

B processes,
8 threads/process

Problem size was change to 1123from

™ OpenMP ComputeSYMGS 144 147 1043 to adjust for the coloring

B OpenMP ComputeSYMGS 114 117

® OpenMP ComputeSPMV 87 88

B OpenMP ComputeSYMGS 107 120

B OpenMP ComputeSYMGS 137 150

m OpenMP ComputeSPMV 81 90

m OpenMP ComputeWAXPBY 69 69

m OpenMP ComputeDotProduct 78 78
OpenMP ComputeRestriction_ref 51 51

N

b
jAII loops were parallelized OK

J

* From previous tuning, MG
was speed up 280% but
parallel effect was low

* SPMV was worse. Why?

m OpenMP ComputeProlongation_ref 49 49
Other 1

/

k
Me 16.2GFLOPS SPMV 20.0GFLOPS
350.0 2.2GFLOPS 0 - : — ‘
0.21% \ =22 Speedup :
300.0 7.0 - X1.2
250.0 \ Speed up 6.0 -
% yons X9.5 —50
g 7.3GFLOPN g 40 7
= 1900 071% ~yy NA F30 -
100.0 20 1
50.0 1.0 -
0.0 T 0.0 -
Asls Previous Coloring Asls Previous Coloring

RIMEN « computer

The ASCR HPCG Workshop

TOTAL * TOTAL run time was improved 8.5 times.
400.0 Speed Up * Coloring time was about 13 second. By dull
350.0 X8.5 (X3.7) implementation for coloring (It is able to be
3000 improved).
= 2500 Speed UP ¢ Current HPCG code calculates a GFLOPS value
2 2000 - based on the total time including with the
¥ 1500 - 839 coloring time. The time is defined assuming the
100.0 0% optimization was performed every cycles with
50.0 (8.95GFLOPS 0.87%) the CG.
. [-
0.0 . w | Therefore resultant GFLOPS value isn’t improved
Asls Previous Coloring 8.5 times.
Total time problem in current HPCG [Gptimize_Joptimizeproblem() <)
Current HPCG
optimze | ¢ | optimze | < | optmize | 6 | optimize | cc |
Total time
Usually problem optimization will be
Usual Computation performed once.
Optimize | G [[G [G | But current HPCG assumes that it will be
performed in same cycles to the CG.
Total time
> Time

The ASCR HPCG Workshop

p. éa Appendix) Tuning on the Ver.1.1

SPMV SYMGS
140 16.3GFLOPS Speed Up
.0 9 250.0 M P
o Bk p] Soeod Un 1.59 GFLOPS X15
' X2.8 200.0 0.16% N\
10.0 \
Z 80 = 150.0
e P 3.83GFLOPS
E 60 - £ 1000 9 Up
[. 0 -
o 5 36% 4.57% . :
20 Down 50.0 .
' X0.85 2.33%
0.0 ‘ 0.0 : —
As Is Previous Coloring Asls Previous Coloring
TOTAL * For previous version 1.1
Speed Up .-
2500 | 2.7GFLOPS 09y (pre-conditioner was SYMGS)
0.26% : .
2000 N\ * Same tuning way was applied.
Up \ * Preconditioning performance was
= 150.0 . .
= improved 15 times.
g 6. SGFLEJPS (xo 92) I p . : .
F 100.0 0. 3/\ A 4 * Total run time was improved 11 times,
50.0 resultant GFLOPS value little low.
(6.01 GFLOPS 0. 59%)
0.0 — . :
Asls Previous Coloring * Tuning effect on the Ver.2.1 was low.

The ASCR HPCG Workshop

po és Under studying

RIMEN « computer

* For preconditioning

* Inthe Ver.1.1, the pre-conditioner performance was improved 6.24
times by the coloring

* Butinthe Ver.2.1, the coloring effect was lower.
* The ver.1.1 employ simple Gauss-Seidel pre-conditioner.
* The ver.2.1 employ complicated Multi-Grid pre-conditioner.

* For SPMV

* The SPMV performance got worse than without the coloring.
* This degradation by the coloring has also occurred in the ver.1.1.
* Butinthever.2.1, the degradation was larger than the Ver.1.1

* Although the same coloring way was applied, why the degradation
was larger than the Ver.1.1 in the Ver.2.1?

The ASCR HPCG Workshop

23

Our requests for the HPCG
and questions

The ASCR HPCG Workshop

P. é, Feedbacks from Japanese HPC Centers:

RIKEN « computer

* Inconsistency due to the geometric MG
preconditioner

— Geometric yet not allowed to exploit the regular
mesh structure in the solver

e Gauss-Seidel vs. Jacobi

— GS without coloring is not parallelizable. Multi-
coloring does not completely preserve the
computation order of the serial implementation.

— Assume an 8-core node. With multi-color GS, the
residual with 8 MPI process run and 1 MPI process
with 8 OpenMP threads will be different.

— Jacobi is much simpler, no loop-carried
dependency.
-]

ﬁ é; Feedbacks from Japanese HPC Centers:

* Need for a well-tuned reference
implementation (cf. HPL for Linpack)

 Measurement until convergence
— Why just 50 iterations?

* Optimization time should not be included in
the reported timing

