Ensemble cell-wide kinetic modeling of anaerobic organisms to support fuels and chemicals
production

Satyakam Dash'"(sud25@psu.edu), Ali Khodayari'"(auk241@psu.edu), Evert K. Holwerda?, Daniel G.
Olson?, M. Ahsanul Islam®, Matthew Theisen®*, James C. Liao*, Gregory Stephanopoulos®, Lee R. Lynd?,
and Costas D. Maranas'

The Pennsylvania State University; “Thayer School of Engineering at Dartmouth College; *Massachusetts
Institute of Technology; “University of California, Los Angeles.

http://maranas.che.psu.edu/
https://engineering.dartmouth.edu/lyndlab/
http://bamel.scripts.mit.edu/gns/
http://www.seas.ucla.edu/~liaoj/

Project Goals: The goal of the project is to systematically construct dynamic models of Clostridium
thermocellum and Clostridium ljungdahlii by making use of Ensemble Modeling (EM) paradigm
through integration of multiple omic information (metabolomic & fluxomic). These models will be
instrumental in exploring genetic interventions for overproduction of biofuel products.

Clostridia have garnered the interest of the bioprocess industry due to their unique metabolism. In
particular, C. thermocellum can metabolize cellulose into biofuels such as ethanol and C. ljungdahlii can
metabolize syn gas using the unique Wood-Ljungdahl pathway. Despite their increasing role as bio-
production platforms, they remain poorly characterized with significant uncertainty in their metabolic
repertoire. To this end, we report progress toward developing cell-wide dynamic metabolic model for
both organisms using the Ensemble Modeling (EM) paradigm [1] built on a curated genome-scale
metabolic (GSM) model foundation. The existing GSM model of C. thermocellum was curated to update
cofactors based on experimental observations [2] and subsequently used to construct a second-generation
GSM model (iCth446). The model contains 446 genes and includes 598 metabolites and 637 reactions,
along with gene-protein-reaction associations. The GSM model predicted higher yield of ethanol
production for malate knockout (Amdh Ame) mutant [3] and showed that lactate dehydrogenase knockout
(Aldh) mutant did not have an effect on growth rate as observed experimentally [4]. The GSM model was
next used to construct a core kinetic metabolic model of the C. thermocellum’s central metabolism
containing 90 reactions and 76 metabolites with cellobiose as the carbon source under anaerobic growth
condition. This core kinetic model accounts for all major biomass precursors. It encompasses the
cellobiose degradation pathway, glycolysis/gluconeogenesis, the pentose phosphate (PP) pathway, the
TCA cycle, pyruvate metabolism, anaplerotic reactions, alternative carbon metabolism, nucleotide
salvage pathway, and 22 substrate level regulatory interactions extracted from BRENDA. Model
parameterization was carried out using the EM approach by simultaneously imposing the mutant library
data recently measured and provided by the Lynd group. This dataset includes C. thermocellum variants
with mutations in lactate, malate, acetate, and hydrogen production pathways and combinations thereof
defining 22 specific mutants with measured concentrations of various fermentation products such as
acetate, lactate, formate, ethanol, hydrogen, carbon dioxide, amino acids and cellobiose (32 measured
concentrations per mutant) (see Figure).

The preliminary analysis of the constructed kinetic model showed accurate predictions of cytosolic
concentrations in multiple mutant strains, particularly for the pathways with measured data and substrate
level regulations during parameterization. For example, the increase in metabolite concentrations (i.e., 1.5
fold) of cellobiose and sugar phosphates by up-regulating amino-acid synthesis pathways under ethanol
stress conditions [3] was accurately captured by the model. The up-regulation of amino acid synthesis led
to an increase in ammonia uptake, which inhibits the phosphofructokinase reaction and results in fructose
phosphate accumulation. Similarly, the fold changes in cytosolic concentrations for thirteen metabolites in
the Aldh mutant were predicted accurately by the kinetic model [4]. Nevertheless, a leave-one-out cross-
validation test to evaluate the robustness of the estimated parameters revealed that the fidelity of the
model predictions remained limited to the mutants located in the proximity of mutations used for training



the model. Thus, integration of additional measured datasets under a variety of perturbation scenarios is
required to address this challenge, while the effect of regulatory events must also be properly accounted
for to make meaningful predictions. To this end, we are currently expanding the range of the training data
by including thirteen additional fermentation datasets under different growth (i.e., media) conditions from
the mutant library. At the same time, we use a data-driven approach to account for the action of all known
regulators upon change in growth condition by adjusting the level of the enzymes under each condition.
In addition, relative mRNA concentrations will be integrated into model to narrow down the range of
enzyme levels that will vary during parameter estimation. RNA-seq data will be generated by the Liao
group for the wild-type organism, as well as for mutant strains that will be constructed by modulating the
activity of selected transcriptional regulators (i.e., increasing and/or decreasing promoter strength). The
constructed model will also be analyzed by the Liao group using the ensemble modeling robustness
analysis (EMRA) to identify the unrobust enzymes and the metabolic conditions which renders them
unstable along with potential metabolic targets for iso-butanol overproduction. A similar effort is also
underway for C. ljungdahlii. The existing GSM was already used as the scaffold for constructing the core
metabolic model, composed of 77 reactions and 63 metabolites (see Figure). The network spans
glycolysis, the Wood-Ljungdahl pathway and an incomplete TCA cycle with 41 substrate level regulatory
interactions from BRENDA based on other Clostridia species. The Stephanopoulos group is applying *C
isotope-assisted labeling experiments and metabolic flux analysis on C. ljungdahlii to study its central
carbon metabolism and the Wood-Ljungdahl pathway (WLP), degeneracy in its TCA cycle, and the C-N
assimilation and influences on the WLP. The generated data will subsequently be used to estimate the
core model parameters using the same proposed framework.
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Figure 1: Core metabolic map of Clostridium thermocellum and Clostridium ljungdahlii. The green arrows represent the metabolite
concentrations which are experimentally measured.



