
The Sky is Falling

Extreme-scale Challenges for Solvers

Information Sciences Institute

8 March 2012
Bob Lucas
rflucas@isi.edu

Outline

Today’s Execution Model
What we’re doing today

Extreme-scale expectations
What you need to be worrying about

Scaling Law’s

Moore’s Law: Number of transistors increases
Dennard Scaling: Voltage scales with geometry
Driving forces behind CMOS performance growth

Performance increases as 1 / alpha^3

Today’s Execution Model

Based on half a century of steady evolution
Von Neuman CPUs => Fortran, C, C++, etc.

Evolutionary extensions
Distributed memory => MPI Library
SIMD extensions => SSE Directives
Multicore nodes => OpenMP Directives
Accelerators => CUDA, OpenCL

All of the above require intervention
Little comes for free anymore
I long for the good old days of CFT77

Distributed Memory

We’ve been doing this for two decades
User has to explicitly manage

Data distribution
Synchronization and communication

Portability via libraries
MPI, IEEE 1516’s RTI
ScaLAPACK, PETSc, etc.

Communication latency is a major problem
Most of it is software overhead
Anton’s point-to-point latency is 200ns

SIMD Extensions

Originally multimedia extensions (MMX)
Energy expended, per Bill Dally

Issue instruction in Pentium ~2000pJ
Issue instruction in Fermi ~200pJ
Perform floating point operation ~50pJ

Amortize instruction issue over more ops.
Reminiscent of vectors

Requires:
Double-word data alignment (still?)
Padding of array dimensions
Directives and even explicit calls (C fanatics)

Multicore Nodes

Dennard scaling has ended
Clock frequencies have plateaued

Moore’s Law continues unabated
Multiple cores per die
Coherent shared memory

Exploit with OpenMP (Pthreads, etc.)
Ideally simple and intuitive:

!$OMP PARALLEL DO
 do i = 1, dma_len
 front(p + i - 1) = front(p + i - 1) + ltmp(i)
 end do

Quickly Gets Ugly

#if 1
C_DOALL_PARALLEL
C_SHARED1 (wave, jwave, iwave, l2D, ln, sp)
C_SHARED2 (tasks, msglvl, msgnum, indices, jv, iv)
C_SHARED2 (l, KObjPtr, KObjVal, alpha, pvtTweak)
C_SHARED2 (Mexists, jm, im, m, K_out)
C_SHARED2 (rs_num, RS_out, k_head, k_line, k_num)
C_SHARED2 (L_out, cleveX, small, sigma, Ltrans)
C_SHARED2 (neq, xl, tmplen, l2Darray, my_err)
C_SHARED2 (nsn, my_max, my_min, my_lnz, my_ops)
C_SHARED2 (my_clprt, my_mxd, hermtn, mom, l2D_ptr)
C_SHARED2 (pvtThrsh, rs_head, rs_line, task_map, offset)
C_SHARED2 (sqz_prec, saunders, my_rv1, my_rv2)
C_PRIVATE (iw, smp_sn, tid, s1, s2)
C_PRIVATE (s3, sp_tmp, p1, lerr, sz, dg)
C_PRIVATE (ld, lp, ip, pp, op, rs)
C_PRIVATE (pi, xtp, xl2D, alpha2)
C_PRIVATE (rip, ibp, sbp, l2p)
C_DYNAMIC
#endif

Accelerators

Long history in scientific computing
e.g., Floating Point Systems

Now exploiting devices for gaming/graphics
Enhance end-user experience
Market is independent of scientific computing

New architectures
Have to rethink algorithms

New programming languages
People are trying directives for std languages

Fortran vs CUDA

do j = jl, jr
 do i = jr + 1, ld
 x = 0.0
 do k = jl, j - 1
 x = x + s(i, k) * s(k, j)
 end do
 s(i, j) = s(i, j) - x
 end do
end do

ip=0;
for (j = jl; j <= jr; j++) {
 if(ltid <= (j-1)-jl){
 gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
 }
 ip = ip + (j - 1) – jl + 1;
 }

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
 i += GPUL_THREAD_COUNT) {
 for (j = jl; j <= jr; j++) {
 gpuls(j-jl,ltid) = s[IDXS(i,j)];
 }
 ip=0;
 for (j = jl; j <= jr; j++) {
 x = 0.0f;
 for (k = jl; k <= (j-1); k++) {
 x = x + gpuls(k-jl,ltid) * gpulskj(ip);
 ip = ip + 1;
 }
 gpuls(j-jl,ltid) -= x;
 }
 for (j = jl; j <= jr; j++) {
 s[IDXS(i,j)] = gpuls(j-jl,ltid);
 }
 }

Dennard Scaling Is Over

Courtesy of Kunle Olukotun, Stanford University

12

Need More Capability?

Application Specific Systems
D.E. Shaw Research Anton

Massive Scaling - LANL/SNL Cray XE6

Exploit a New Phenomenon
Adiabatic Quantum Computer

D-Wave One

Expectations for the Future

Seminal DARPA study
Peter M. Kogge (editor), “Exascale Computing

Study: Technology Challenegs in Achieving
Exascale Systems”, Univ. of Notre Dame, CSE
Detp. Tech. Report, TR-2008-13, Sept. 28, 2008

Principle challenges
Concurrency O(1B ALUs)
Energy Hundreds of MWs
Memory Falling off Moore’s Law
Resilience Soft error rate skyrockets

Concurrency Projection

How much parallelism must be handled by the program?
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at the Exascale

Frontier”, June 20, 2008

Concurrency

Rate of growth accelerating exponentially
With multithreading, it could reach billions

What’s the Amdahl fraction of that?
May need to rediscover fine-grain SIMD

Familiar synchronization will be prohibitive
Dot products in Krylov-space algorithms
Reductions for error state or Courant number

We’ll have to rethink a lot of mathematics
Communication avoiding algorithms
Somebody needs to invent a new reordering

I Worry about Reordering
and Load Balance

Multifrontal linear solver elimination tree
Supernodes scaled by operations

Courtesy of Cleve Ashcrfat, LSTC

Energy of Moving Data

Courtesy of Rich Murphy, Sandia National Laboratory

Energy Challenges

Data movement will dominate energy
What’s the abstraction for this?
I expect explicit machine model
Will need to overlay with virtual model

Heterogeneous processing nodes
SIMD nodes to minimize instruction issue
Low-latency nodes for Amdahl fractions
Dark Silicon: only power up cores you need
AMD’s Fusion is just the beginning

System Energy Perspective
G

ig
aF

lo
p/

s

K
ilo

W
at

ts

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1960 1970 1980 1990 2000 2010 2020

Performance (Gflops)
Power

Today’s DRAM Structure

http://www.sdram-technology.info/sdram-cross-section.html

Memory

End of Moore’s Law for DRAM before logic
DRAM structures are 3D

Won’t have luxury of redundant data
Material properties tables
Executables

Problem since shared data can’t be local
Requires energy to move it

I expect explicit memory hierarchies
Already seen it in Cray 2, Cell, & GPUs
What’s the programming abstraction?

Memory Capacity Challenge

ExaFlop/s

ExaBytes

1,000,000 DRAM chips, circa 2014

and David Koester (MITRE)

Resilience …
We Assume Computers Work

Today’s model assumes things work correctly.
What’s the Fortran abstraction for uncertainty?

Standard practice is checkpoint/restart
Scientists don’t write trap handlers

This may not last much longer …

VLSI Manufacturing
Challenges

Courtesy of Shekhar Borkar, Intel

Dopants in the channel Wavelength of light

10100100010000 1000 500 250 130 65 32Technology Node (nm)Mean Number of Dopant Atoms

0.01

0.1

1

1980 1990 2000 2010 2020

micron

10

100

1000

nm193nm 248nm
365nm Lithography

Wavelength

65nm
90nm

130nm

Generation

Gap

45nm
32nm

13nm
EUV

180nm

Source: Mark Bohr, Intel

Sub-wavelength Lithography

10

100

1000

10000

1000 500 250 130 65 32

Technology Node (nm)

M
ea

n
N

um
be

r
of

 D
op

an
t

A
to

m
s

Random Dopant Fluctuations

Soft Error Rates Are Rising

Courtesy of Shekhar Borkar, Intel

Chip SEU Trend

1

10

180 130 90 65 45 32

Technology (nm)

SE
U

 N
or

m
 to

 1
30

nm

cache
arrays

logic

2X bit/latch count
increase per generation

Business Constraints

Courtesy of John Shalf, LBNL

Left to right: OS, disk, CPU, memory
Too much reliability is irresponsible

What is COTS?

Courtesy of John Shalf, LBNL

Hand-helds supplanting PCs & servers
Will that lower the bar?

Resilient Solvers

Check pointing won’t be adequate any more
Error rates will grow faster than I/O B/W

Memory and networks protected with ECC
But not the interfaces between them

What about processors and arithmetic?
Can’t afford blanket use of redundancy

Might need new (stochastic?) algorithms
Ignore some errors (e.g., HPCS Random Access)
Correct others (e.g., Iterative Refinement)
Trade energy and/or performance for resilience.

Summary

Some people will make it to extreme-scale
I’m literally betting on Malcolm Stocks
I worry about mine

Solvers will have to change
Scalable, perhaps stochastic algorithms
Resilient S/W (self checking/correcting)
Reason about energy and memory hierarchy

Solvers need to evolve
Don’t unnecessarily throw away working code

	Slide Number 1
	Outline
	Scaling Law’s
	Today’s Execution Model
	Distributed Memory
	SIMD Extensions
	Multicore Nodes
	Quickly Gets Ugly
	Accelerators
	Fortran vs CUDA
	Dennard Scaling Is Over
	Slide Number 12
	Expectations for the Future
	Concurrency Projection
	Concurrency
	I Worry about Reordering �and Load Balance
	Energy of Moving Data
	Energy Challenges
	System Energy Perspective
	Today’s DRAM Structure
	Memory
	Memory Capacity Challenge
	Resilience …�We Assume Computers Work
	VLSI Manufacturing�Challenges
	Soft Error Rates Are Rising
	Business Constraints
	What is COTS?
	Resilient Solvers
	Summary

