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Today’s Execution Model

What we’re doing today
Extreme-scale expectations

What you need to be worrying about
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Moore’s Law: Number of transistors increases
Dennard Scaling: Voltage scales with geometry

———~ Driving forces behind CMOS performance growth
U_SC Performance increases as 1/ alpha”3
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Based on half a century of steady evolution
Von Neuman CPUs => Fortran, C, C++, etc.
Evolutionary extensions
Distributed memory => MPI Library

SIMD extensions  => SSE Directives
Multicore nodes => OpenMP Directives
Accelerators => CUDA, OpenCL

All of the above require intervention
Little comes for free anymore
vy | long for the good old days of CFT77
USC 9 9 y
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We’'ve been doing this for two decades
User has to explicitly manage

Data distribution

Synchronization and communication
Portability via libraries

MPI, IEEE 1516’s RTI

ScaLAPACK, PETSc, etc.
Communication latency is a major problem
Most of it Is software overhead
Anton’s point-to-point latency is 200ns

USC
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Originally multimedia extensions (MMX)

Energy expended, per Bill Dally
Issue instruction in Pentium ~2000pJ
Issue instruction in Fermi ~200pJ
Perform floating point operation ~50pJ

Amortize instruction iIssue over more ops.

Reminiscent of vectors
Requires:
Double-word data alignment (still?)

— Padding of array dimensions
USC Directives and even explicit calls (C fanatics)

/ISI/
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Dennard scaling has ended
Clock frequencies have plateaued

Moore’s Law continues unabated

Multiple cores per die
Coherent shared memory

Exploit with OpenMP (Pthreads, etc.)

ldeally simple and intuitive:

I$SOMP PARALLEL DO
doi=1,dma_len
front(p +i-1)=front(p +i-1) + Itmp(i)
end do
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#if 1

C_DOALL_PARALLEL

C _SHARED1 (wave, jwave, iwave, 2D, In, sp)
C_SHARED?2 (tasks, msglvl, msgnum, indices, jv, iv)
C_SHARED2 (I, KObjPtr, KObjVal, alpha, pvtTweak)
C_SHARED2 (Mexists, jm, im, m, K_out)
C_SHARED2 (rs_num, RS _out, k head, k_line, k _num)
C _SHARED2 (L_out, cleveX, small, sigma, Ltrans)
C_SHARED2 (neq, xl, tmplen, |2Darray, my_err)
C_SHARED2 (nsn, my_max, my_min, my_Inz, my_ops)
C_SHARED2 (my_clprt, my_mxd, hermtn, mom, [12D_ptr)
C_SHARED2 (pvtThrsh, rs_head, rs_line, task_map, offset)
C_SHARED2 (sqz_prec, saunders, my_rvl, my rv2)
C_PRIVATE (iw, smp_sn, tid, s1, s2)

C_PRIVATE (s3, sp_tmp, pl, lerr, sz, dg)
C_PRIVATE (Id, Ip, ip,  pp, op, rs)
C_PRIVATE (pi, xtp, xI2D, alpha2)

C_PRIVATE (rip, ibp, sbp, 12p)

C_DYNAMIC

#endif

Quickly Gets Ugly
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Long history in scientific computing
e.g., Floating Point Systems
Now exploiting devices for gaming/graphics
Enhance end-user experience
Market is independent of scientific computing
New architectures
Have to rethink algorithms
New programming languages
People are trying directives for std languages

USC
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doj=jl,jr
doi=jr+1,Id
x =0.0
dok=jl,j-1
X =X +s(i, k) *s(k, ))
end do
s(,j)=s(,]) - x
end do
end do

USC

Fortran vs CUDA
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1p=0;
for G = jl; j <= jr; j++) {
if(ltid <= (g-1)-jh){
gpulskj(ip+ltid) = s[IDXS@Gl+I1tid,j)];
by
ip=ip+ g -1) —jl + 1;
+

__syncthreads();

for (i = jr + 1 + tid; i <= Id;
i += GPUL_THREAD_COUNT) {
for G =j31; J <=]r; j++) {
gpuls(j-jl.,1tid) = s[IDXS(i,j)];

}

1p=0;

for G =jl; 3 <= Jjr; j+t) {
X = 0.0F;

for (k = jl; k <= g-1); k++) {

X = x + gpuls(k-jl,1tid) * gpulskj(ip);
ip =1p + 1;

+

gpuls(-jl,1tid) = x;

}

for G = jl; j <= jr; j++) {
S[IDXS(i,j)] = gpuls(-jI,1tid):
}

}
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Dennard Scaling Is Over e i
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Exploit a New Phenomenon
Adiabatic Quantum Computer
D-Wave One

—————— Application Specific Systems
l lS D.E. Shaw Research Anton

12
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Seminal DARPA study

Peter M. Kogge (editor), “Exascale Computing
Study: Technology Challenegs in Achieving
Exascale Systems”, Univ. of Notre Dame, CSE
Detp. Tech. Report, TR-2008-13, Sept. 28, 2008

Principle challenges
Concurrency O(1B ALUs)
Energy Hundreds of MWs
Memory Falling off Moore’s Law
Resilience Soft error rate skyrockets

USC



USC Viterbi

School of Engineering

USC

1.E+08

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

Total Concurrecncy

1.E+02

1.E+01

1.E+00

Concurrency Projection

hillion_per cvcle
r o

e

-

1 million| per cycle

1,000 per cycle X
-
s
-
7
X
X X

ez e 80 1184 188 1MB2 11796

1100 171104

171/08 1112

17116

111720

ASI-

Information Sciences Insfitute

¢ Top10 ® TopSystem ———-Top1Trend X

Historical

Heavy Node Projections

How much parallelism must be handled by the program?
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at the Exascale

Frontier”, June 20, 2008
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Rate of growth accelerating exponentially

With multithreading, it could reach billions
What's the Amdahl fraction of that?
May need to rediscover fine-grain SIMD
Familiar synchronization will be prohibitive
Dot products in Krylov-space algorithms
Reductions for error state or Courant number

We’ll have to rethink a lot of mathematics
Communication avoiding algorithms
———Somebody needs to invent a new reordering

USC
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Multifrontal linear solver elimination tree

Supernodes scaled by operations
SC Courtesy of Cleve Ashcrfat, LSTC
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Data movement will dominate energy
What's the abstraction for this?
| expect explicit machine model
Will need to overlay with virtual model

Heterogeneous processing nodes
SIMD nodes to minimize instruction issue
Low-latency nodes for Amdahl fractions
Dark Silicon: only power up cores you need
AMD’s Fusion is just the beginning

USC
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b) Tranzistor

USC

Today’s DRAM Structure

a) Stack capacitors
above the transistor
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http://www.sdram-technology.info/sdram-cross-section.html




IS
USC Viterbi Memory i

School of Engineering

End of Moore’s Law for DRAM before logic
DRAM structures are 3D

Won't have luxury of redundant data
Material properties tables
Executables

Problem since shared data can’t be local

Requires energy to move it

| expect explicit memory hierarchies
Already seen it in Cray 2, Cell, & GPUs
What's the programming abstraction?

USC
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1,000,000 DRAM chips, circa 2014
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Today’s model assumes things work correctly.
What's the Fortran abstraction for uncertainty?

Standard practice is checkpoint/restart
Scientists don’t write trap handlers

This may not last much longer ...
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Soft Error Rates Are Rising
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Left to right: OS, disk, CPU, memory
SC Too much reliability is irresponsible
Courtesy of John Shalf, LBNL
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What is COTS?

Apple Inc. - Sales by Quarter by MacRumors.com
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USC

Hand-helds supplanting PCs & servers

Will that lower the bar?
Courtesy of John Shalf, LBNL
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Check pointing won'’t be adequate any more
Error rates will grow faster than I/0O B/W
Memory and networks protected with ECC
But not the interfaces between them
What about processors and arithmetic?
Can’t afford blanket use of redundancy
Might need new (stochastic?) algorithms
lgnore some errors (e.g., HPCS Random Access)
Correct others (e.g., Iterative Refinement)
Trade energy and/or performance for resilience.

USC
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Some people will make it to extreme-scale
I’m literally betting on Malcolm Stocks
| worry about mine
Solvers will have to change
Scalable, perhaps stochastic algorithms
Resilient S/W (self checking/correcting)
Reason about energy and memory hierarchy
Solvers need to evolve
Don’t unnecessarily throw away working code

USC
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