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Outline 

Today’s Execution Model 
What we’re doing today 

Extreme-scale expectations 
What you need to be worrying about 

 



Scaling Law’s 

Moore’s Law: Number of transistors increases 
Dennard Scaling: Voltage scales with geometry 
Driving forces behind CMOS performance growth 

Performance increases as 1 / alpha^3 



Today’s Execution Model 

Based on half a century of steady evolution 
Von Neuman CPUs => Fortran, C, C++, etc. 

Evolutionary extensions 
Distributed memory => MPI Library 
SIMD extensions => SSE Directives 
Multicore nodes => OpenMP Directives 
Accelerators  => CUDA, OpenCL 

All of the above require intervention 
Little comes for free anymore 
I long for the good old days of CFT77 

 



Distributed Memory 

We’ve been doing this for two decades 
User has to explicitly manage 

Data distribution 
Synchronization and communication 

Portability via libraries 
MPI, IEEE 1516’s RTI 
ScaLAPACK, PETSc, etc. 

Communication latency is a major problem 
Most of it is software overhead 
Anton’s point-to-point latency is 200ns 
 

 



SIMD Extensions 

Originally multimedia extensions (MMX) 
Energy expended, per Bill Dally 

Issue instruction in Pentium  ~2000pJ 
Issue instruction in Fermi  ~200pJ 
Perform floating point operation ~50pJ 

Amortize instruction issue over more ops. 
Reminiscent of vectors 

Requires: 
Double-word data alignment (still?) 
Padding of array dimensions 
Directives and even explicit calls (C fanatics) 
 



Multicore Nodes 

Dennard scaling has ended 
Clock frequencies have plateaued 

Moore’s Law continues unabated 
Multiple cores per die 
Coherent shared memory 

Exploit with OpenMP (Pthreads, etc.) 
Ideally simple and intuitive: 

!$OMP PARALLEL DO 
      do i = 1, dma_len 
        front(p + i - 1) = front(p + i - 1) +  ltmp(i) 
      end do 

 

 



Quickly Gets Ugly 

#if 1 
C_DOALL_PARALLEL 
C_SHARED1 (wave,     jwave,    iwave,   l2D,      ln,      sp) 
C_SHARED2 (tasks,    msglvl,   msgnum,  indices,  jv,      iv) 
C_SHARED2 (l,        KObjPtr,  KObjVal, alpha,    pvtTweak) 
C_SHARED2 (Mexists,  jm,       im,      m,        K_out) 
C_SHARED2 (rs_num,   RS_out,   k_head,  k_line,   k_num) 
C_SHARED2 (L_out,    cleveX,   small,   sigma,    Ltrans) 
C_SHARED2 (neq,      xl,       tmplen,  l2Darray, my_err) 
C_SHARED2 (nsn,      my_max,   my_min,  my_lnz,   my_ops) 
C_SHARED2 (my_clprt, my_mxd,   hermtn,  mom,      l2D_ptr) 
C_SHARED2 (pvtThrsh, rs_head,  rs_line, task_map, offset) 
C_SHARED2 (sqz_prec, saunders, my_rv1,  my_rv2) 
C_PRIVATE (iw,       smp_sn,   tid,     s1,       s2) 
C_PRIVATE (s3,       sp_tmp,   p1,      lerr,     sz,      dg) 
C_PRIVATE (ld,       lp,       ip,      pp,       op,      rs) 
C_PRIVATE (pi,       xtp,      xl2D,    alpha2) 
C_PRIVATE (rip,      ibp,      sbp,     l2p) 
C_DYNAMIC 
#endif 

 



Accelerators 

Long history in scientific computing 
e.g., Floating Point Systems 

Now exploiting devices for gaming/graphics 
Enhance end-user experience 
Market is independent of scientific computing 

New architectures 
Have to rethink algorithms 

New programming languages 
People are trying directives for std languages 
 

 



Fortran vs CUDA 

do j = jl, jr 
  do i = jr + 1, ld 
    x = 0.0 
    do k = jl, j - 1 
      x = x + s(i, k) * s(k, j) 
    end do 
    s(i, j) = s(i, j) - x 
  end do 
end do 
 

ip=0; 
for (j = jl; j <= jr; j++) { 
  if(ltid <= (j-1)-jl){ 
    gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)]; 
    } 
  ip = ip + (j - 1) – jl + 1; 
  } 
 
__syncthreads(); 
 
for (i  = jr + 1 + tid; i <= ld;  
     i += GPUL_THREAD_COUNT) { 
  for (j = jl; j <= jr; j++) { 
    gpuls(j-jl,ltid) = s[IDXS(i,j)]; 
    } 
  ip=0; 
  for (j = jl; j <= jr; j++) { 
    x = 0.0f; 
    for (k = jl; k <= (j-1); k++) { 
      x  = x  + gpuls(k-jl,ltid) * gpulskj(ip); 
      ip = ip + 1; 
      } 
      gpuls(j-jl,ltid) -= x; 
    } 
  for (j = jl; j <= jr; j++) { 
    s[IDXS(i,j)] = gpuls(j-jl,ltid); 
    } 
  } 
     



Dennard Scaling Is Over 

Courtesy of Kunle Olukotun, Stanford University 
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Need More Capability? 

Application Specific Systems 
D.E. Shaw Research Anton 

Massive Scaling - LANL/SNL Cray XE6 

Exploit a New Phenomenon 
Adiabatic Quantum Computer 

D-Wave One 



Expectations for the Future 

Seminal DARPA study 
Peter M. Kogge (editor), “Exascale Computing 

Study: Technology Challenegs in Achieving 
Exascale Systems”, Univ. of Notre Dame, CSE 
Detp. Tech. Report, TR-2008-13, Sept. 28, 2008 

Principle challenges 
Concurrency O(1B ALUs) 
Energy  Hundreds of MWs 
Memory  Falling off Moore’s Law 
Resilience Soft error rate skyrockets 

 



Concurrency Projection 

How much parallelism must be handled by the program? 
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at the Exascale 

Frontier”, June 20, 2008 



Concurrency 

Rate of growth accelerating exponentially 
With multithreading, it could reach billions 

What’s the Amdahl fraction of that? 
May need to rediscover fine-grain SIMD 

Familiar synchronization will be prohibitive 
Dot products in Krylov-space algorithms 
Reductions for error state or Courant number 

We’ll have to rethink a lot of mathematics 
Communication avoiding algorithms 
Somebody needs to invent a new reordering 

 

 



I Worry about Reordering  
and Load Balance 

Multifrontal linear solver elimination tree 
Supernodes scaled by operations 

Courtesy of Cleve Ashcrfat, LSTC 
 



Energy of Moving Data 

Courtesy of Rich Murphy, Sandia National Laboratory 



Energy Challenges 

Data movement will dominate energy 
What’s the abstraction for this? 
I expect explicit machine model 
Will need to overlay with virtual model 

Heterogeneous processing nodes 
SIMD nodes to minimize instruction issue 
Low-latency nodes for Amdahl fractions 
Dark Silicon: only power up cores you need 
AMD’s Fusion is just the beginning 

 
 
 



System Energy Perspective 
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Today’s DRAM Structure 

http://www.sdram-technology.info/sdram-cross-section.html 



Memory 

End of Moore’s Law for DRAM before logic 
DRAM structures are 3D 

Won’t have luxury of redundant data 
Material properties tables 
Executables 

Problem since shared data can’t be local 
Requires energy to move it 

I expect explicit memory hierarchies 
Already seen it in Cray 2, Cell, & GPUs 
What’s the programming abstraction? 

 



Memory Capacity Challenge 

ExaFlop/s 

ExaBytes 

1,000,000 DRAM chips, circa 2014 

and  David Koester (MITRE) 



Resilience … 
We Assume Computers Work 

Today’s model assumes things work correctly. 
What’s the Fortran abstraction for uncertainty? 

Standard practice is checkpoint/restart 
Scientists don’t write trap handlers 

This may not last much longer … 



VLSI Manufacturing 
Challenges 

Courtesy of Shekhar Borkar, Intel 
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Soft Error Rates Are Rising 

Courtesy of Shekhar Borkar, Intel 
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Business Constraints 

Courtesy of John Shalf, LBNL 

Left to right:  OS, disk, CPU, memory 
Too much reliability is irresponsible 



What is COTS? 

Courtesy of John Shalf, LBNL 

Hand-helds supplanting PCs & servers 
Will that lower the bar? 



Resilient Solvers 

Check pointing won’t be adequate any more 
Error rates will grow faster than I/O B/W 

Memory and networks protected with ECC 
But not the interfaces between them 

What about processors and arithmetic? 
Can’t afford blanket use of redundancy 

Might need new (stochastic?) algorithms 
Ignore some errors (e.g., HPCS Random Access) 
Correct others (e.g., Iterative Refinement) 
Trade energy and/or performance for resilience. 



Summary 

Some people will make it to extreme-scale 
I’m literally betting on Malcolm Stocks 
I worry about mine 

Solvers will have to change 
Scalable, perhaps stochastic algorithms 
Resilient S/W (self checking/correcting) 
Reason about energy and memory hierarchy 

Solvers need to evolve 
Don’t unnecessarily throw away working code 
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