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Productivity – a computing metric of merit 

• A rich measure of quality for computing 
– Captures key factors that determine overall impact 

– Exposes relationship between program development and 
program execution 

– Supersedes incomplete parameters of assumed performance 

• Focuses attention on all (most) important contributors to 
overall effectiveness 

• Permits cogent comparative assessment of alternative 
system classes 

• Explored as part of DARPA HPCS Program Phase 1 
– T. Sterling 

– M. Snir 

– B. Smith 

– Jeremy Kempner  



ECI Thrusts Interrelationships 
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A Shared Notional Perspective 

• Productivity is a positive measure of the computing experience 
– The greater the productivity, the better the computing experience 

• Productivity is an expanded measure of computing effectiveness 
– Beyond just flops or sloc or utilization, spanning these and others 

• Productivity is strongly related to ease of use 
– Less effort for same result in same time 

• HPC-productivity relates to performance improvements 
– HPC goal is to minimize execution time to solution 

– Level of programming effort increased to increase performance 

• Productivity unifies usability and performance 
– Expresses tradeoff between programmability and delivered 

performance 

• May reflect other factors 
– Like cost, energy, …  

• Expanded to facilitate and improve end-to-end science 



Productivity Factors Tree 
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HPC Productivity – Peak Performance 
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Productivity Efficiency 
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HPC Productivity Programmability 
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HPC Productivity Availability 
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Work Flow for System Productivity 
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Utility Function (U) 

• Establishes value of accomplishing 
computation 

• With respect to time 
– Justifies HPC and scalability 

– Shorter time to compute solution is better 

– Shorter time to science result 

• Greater accuracy 
– Bigger data sets 

– More phenomenology 

– Finer grained time steps 

• What are the units? 
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Framework for Productivity 
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Max Achievable Parallel Efficiency (MAPE) 

Performance Efficiency  

Sequential Parallel Efficiency (SPE) 

1.0 Time to Program  0 

0.0 

Parallel Programmability (r) 

1.0 

Dt 

(MAPE – SPE)  

SPE + 0.9 x (MAPE – SPE)  

0.9 x MAPE – SPE  

r  1/(1 Dt) 
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General Model of System Productivity 
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W Special Model of Productivity 
Work based Estimator of Result Value 
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W Special Model of Productivity 
Work based Estimator of Result Value 

• Establish result value based on useful work required 

• Useful work excludes overhead and redundant operations 

• Not all operations are created equal 

• Bad programs are unfairly valued 

• Memory operations may be considered overhead in many cases 

• Different CPUs have different ISAs 
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W Special Model of Productivity 
Cost of Software 
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Goals for ECI Productivity 

• Reduce the time and cost to program development 
– Assembling interoperable components 

– Parallel debugging 

– Performance tuning 

– Numerical accuracy 

• Reduce time and cost to getting program to run 
– Data initialization 

– Data analysis 

• Reduce time and cost to execute program 
– A lot of work (flops or ops) 

– Efficiency 

– Strong scaling (fixed size problem, shorter time) 

– Large data sets 

– Availability 

 



System Productivity Thrust Areas 

• Programming languages (ease of use, performance) 
– High level abstraction based semantics 

– Separate algorithm capture from explicit resource management 

– New formalisms for latency hiding, parallelism exposure 

– Domain specific environments 

– Self adaptive compile/runtime methods 

• Architecture (cost, performance, ease of use) 
– Global name space 

– Exposes and exploit diversity of parallelism 
• Fine grain synchronization  

• Breaking barrier 

– Fault tolerance and power management 

– Low overhead parallel action dispatch 

– Latency and contention delay hiding/tolerant 



Productivity Thrust Areas (continued) 

• Runtime and OS (scalability, performance, ease of use) 

– Optimized for application requirements 

– Minimize overhead 

– Management of load balancing 

– Lightweight kernels 

• Application preparation (ease of use) 

– Data set initialization 

– Data analysis 

• Model of computation (performance, scalability) 

– Central to many of these targets 

– Provides a unifying governing set of principles 

– Opens decision chain 



Conclusions 

• Productivity is a measure of quality of the computing 

experience including delivered performance and 

programmability 

• There is no single adopted definition, although common 

notional ideas 

• A future derivation must be guided by expected 

sensitivities with respect to all indicator factors 

• Special cases of formulation can yield quantifiable 

metrics of productivity 

• A robust definition can govern future design and 

methodologies for exascale  
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