
HPC Productivity Foundations 

Thomas Sterling 

Chief Scientist, CREST 

Professor, School of Informatics and Computing 

Indiana University 



Productivity – a computing metric of merit 

• A rich measure of quality for computing 
– Captures key factors that determine overall impact 

– Exposes relationship between program development and 
program execution 

– Supersedes incomplete parameters of assumed performance 

• Focuses attention on all (most) important contributors to 
overall effectiveness 

• Permits cogent comparative assessment of alternative 
system classes 

• Explored as part of DARPA HPCS Program Phase 1 
– T. Sterling 

– M. Snir 

– B. Smith 

– Jeremy Kempner  



ECI Thrusts Interrelationships 

System Thrusts 

C
ro

s
s
-C

u
tt

in
g
 T

h
ru

s
ts

 

Chip I/O 
System 

Interconnect 
File I/O 

P
o

w
e
r 

R
e
s
il
ie

n
c
e

 
P

ro
d

u
c
ti

v
it

y
 

Productivity 

S
o
ft
w

a
re

 

Performance 

Usability 

Cost 

A
rc

h
it
e

c
tu

re
 

P
ro

g
ra

m
m

in
g
 M

o
d
e
ls

 



A Shared Notional Perspective 

• Productivity is a positive measure of the computing experience 
– The greater the productivity, the better the computing experience 

• Productivity is an expanded measure of computing effectiveness 
– Beyond just flops or sloc or utilization, spanning these and others 

• Productivity is strongly related to ease of use 
– Less effort for same result in same time 

• HPC-productivity relates to performance improvements 
– HPC goal is to minimize execution time to solution 

– Level of programming effort increased to increase performance 

• Productivity unifies usability and performance 
– Expresses tradeoff between programmability and delivered 

performance 

• May reflect other factors 
– Like cost, energy, …  

• Expanded to facilitate and improve end-to-end science 



Productivity Factors Tree 

Productivity 

(Y) 
Application 

Construction 

(CS) 

Availability 

(A) 

Performance 

Peak Performance (SP, CM) 

Efficiency (E) 

Programmability 

Portability 

Reliability 

Maintainability 

Accessibility 



November 21, 

2003 

Thomas Sterling - Caltech 

& JPL 

6 

HPC Productivity – Peak Performance 
 

Productivity 

Programmability 

Availability 

Efficiency 

Peak Performance 

or Max Capability 

Peak Processor 

Performance 

# Processors 

Memory 

Capacity 

Bisection BW 

Clock rate 

Ops/cycle 

# nodes 

Processors  

per node 

Constraints 

Cost 

Power/cooling 

Floor space 



7 

Productivity Efficiency 

Productivity 

Programmability 

Availability 

Efficiency 

Peak Performance 
Latency 

Overhead 

Starvation 

Synchronization 

Contention 

Parallelism 

Scheduling 

Execution Pipeline 

Context switching 

Memory Management 

Communication 

Memory access  

Load balance 

Communication 

Memory Bank 

Execution Resource 

I/O Channel 

Scalability 



HPC Productivity Programmability 
 

Productivity 

Programmability 

Availability 

Efficiency 

Peak Performance 

Parallelism 

Representation 

Debugging 

Resource 

Management 

Portability 

Locality 

Scheduling 

Correctness 

Legacy Codes 

Performance 

Cross Platform 

Implicit 

Explicit 

Higher Level 

Abstraction 

Compiler 

Optimization 



HPC Productivity Availability 
 

Productivity 

Programmability 

Availability 

Efficiency 

Peak Performance 

Maintainability 

Reliability 

Fault tolerance 

MTBF 

SW Robustness 

Diagnostics 

Serviceability 

Accessibility 
User Interface 

Job Scheduling 

Subscription 

Checkpoint restart 

Detection, diagnosis, 

isolation, recovery 



Work Flow for System Productivity 

Advanced 

Computing 

System 

Programming 

Effort 

Programming 

Effort 

Programming 

Effort 



Utility Function (U) 

• Establishes value of accomplishing 
computation 

• With respect to time 
– Justifies HPC and scalability 

– Shorter time to compute solution is better 

– Shorter time to science result 

• Greater accuracy 
– Bigger data sets 

– More phenomenology 

– Finer grained time steps 

• What are the units? 

 

time 

U 



Framework for Productivity 

TC

R

C

TU

CCCC

C

T

U(T)

OMP


Y

Y









Y

)(

Cost

result produce  toTime

 timeoffunction  a asUtility 

 UtilitySystem, n,Applicatio offunction  a asty Productivi

U
ti
lit

y
(T

) 

T 

A4 
A3 

A1 

A2 

A5 



13 

Max Achievable Parallel Efficiency (MAPE) 

Performance Efficiency  

Sequential Parallel Efficiency (SPE) 

1.0 Time to Program  0 

0.0 

Parallel Programmability (r) 

1.0 

Dt 

(MAPE – SPE)  

SPE + 0.9 x (MAPE – SPE)  

0.9 x MAPE – SPE  

r  1/(1 Dt) 



14 

General Model of System Productivity 

typroductivi

result for  softwaren applicatio ofcost 

oninstallati initial andt procuremen ofcost 

 during ownership of costs

 during costs softwaren applicatio

 during machine with associated costs all

 during productsresult  ofnumber  total

machine of  timeworking

machine of timequiescent 

machine of  timeoverhead total

machine of lifetime total

result  compute  totime

productresult  

Y

























iS

M

LLO

LLS

LL

LR

R

Q

V

L

i i

th
i

RC

C

TC

TC

TC

TN

T

T

T

T

R T

iR

i
LL

L

N

i

SiLS

LOMLSL

N

i

iL

QVRL

N

i

iR

TC

R

CC

CCCC

RR

TTTT

TT

R

R

R


Y



















15 

W Special Model of Productivity 
Work based Estimator of Result Value 

eperformancpeak 

efficiency average

 during efficiency

tyavailabili









P

ii

S

E

TE

A
( )

( )

L

p
W

LPRPR

R

N

i

ii

L

R

N

i

iiPR

iiPRi

C

AES

TAESTESW

T

TE

E

T
TA

TESW

TESW

R

R


Y



















W Special Model of Productivity 
Work based Estimator of Result Value 

• Establish result value based on useful work required 

• Useful work excludes overhead and redundant operations 

• Not all operations are created equal 

• Bad programs are unfairly valued 

• Memory operations may be considered overhead in many cases 

• Different CPUs have different ISAs 

 

LL

RL
W

N

i

DiViiRL

TC

W

WWWW
R


Y

 

estimatorty productivi based-work

 during performed operationsredundant 

 during performed work overhead

 during performed work total

 during performed work useful

Y









W

iDi

iVi

ii

LRL

TW

TW

TW

TW



17 

W Special Model of Productivity 
Cost of Software 

LOo

LMm

ii

f

use

port

new

buguse

bugport

bugnew

use

port

new

TCc

TCc

R

c





























for  code of size

programmer canonical of work of unit timeper cost 

reused is that code offraction 

ported is that code offraction 

new is that code offraction 

code sizeunit  reused debugging of  time

code sizeunit  ported debugging of  time

code sizeunit  new debugging of  time

code sizeunit  existing gconfigurin of  time

code sizeunit  existing porting of  time

code sizeunit  new  writingof  time

code sizeunit  ngmanipulatior  generating of  time

r

r

r

t

t

t

t

t

t

t
 

 

 

( )

( ) 

( ) 

( )  T
A

cc
ρc

AES

CCρc

AES

ρcC

ρcC

ρ

om
f

P
W

N

i

OMiiif

P
W

N

i

iiifS

iiifSi

ibug,iprog,i

iuse,iport,inew,i

ibuguse,ibugport,ibugnew,ibug,

iuse,iport,inew,iprog,

R

R








 



Y




Y

















t

t

t

t

ttt

rrr

tttt

tttt

 , ,

 , ,

 , ,



Goals for ECI Productivity 

• Reduce the time and cost to program development 
– Assembling interoperable components 

– Parallel debugging 

– Performance tuning 

– Numerical accuracy 

• Reduce time and cost to getting program to run 
– Data initialization 

– Data analysis 

• Reduce time and cost to execute program 
– A lot of work (flops or ops) 

– Efficiency 

– Strong scaling (fixed size problem, shorter time) 

– Large data sets 

– Availability 

 



System Productivity Thrust Areas 

• Programming languages (ease of use, performance) 
– High level abstraction based semantics 

– Separate algorithm capture from explicit resource management 

– New formalisms for latency hiding, parallelism exposure 

– Domain specific environments 

– Self adaptive compile/runtime methods 

• Architecture (cost, performance, ease of use) 
– Global name space 

– Exposes and exploit diversity of parallelism 
• Fine grain synchronization  

• Breaking barrier 

– Fault tolerance and power management 

– Low overhead parallel action dispatch 

– Latency and contention delay hiding/tolerant 



Productivity Thrust Areas (continued) 

• Runtime and OS (scalability, performance, ease of use) 

– Optimized for application requirements 

– Minimize overhead 

– Management of load balancing 

– Lightweight kernels 

• Application preparation (ease of use) 

– Data set initialization 

– Data analysis 

• Model of computation (performance, scalability) 

– Central to many of these targets 

– Provides a unifying governing set of principles 

– Opens decision chain 



Conclusions 

• Productivity is a measure of quality of the computing 

experience including delivered performance and 

programmability 

• There is no single adopted definition, although common 

notional ideas 

• A future derivation must be guided by expected 

sensitivities with respect to all indicator factors 

• Special cases of formulation can yield quantifiable 

metrics of productivity 

• A robust definition can govern future design and 

methodologies for exascale  

21 




