]
____..__

Y
o
S

2

>
)

2

i
(4]

i

-
o
(C
-

o

<

ivity

Product

hards

John Ric

IBM Watson Group

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

2% had A
Outline

= Why measure productivity
= How we measured PERCS productivity
= What contributed to PERCS productivity gains

= What is fundamentally different at exascale

o0 il R
Why Measure HPC Productivity?

= Examination/engineering of whole system

= Discovery of otherwise hidden tradeoffs

* Prioritization of research and development

o0 il R
PERCS Productivity Assessment

(WEF 5 — System Administration

\
/
WF 4 — Porting & Optimization

\

/
WF 2 — Compact Codes
4)
/

WF 1 — Multimodule Codes

- /

Phase 1 start (2002) < compared with | _ > Phase 3 end (2012)

o200 el

2002 Baseline Environment

= 2002 System — NERSC-3 Phase 2 aka “Seaborg”

— 3,328 processors (3,008 available for computation), 208 16-way compute nodes, AlX 4.x
— Main memory of 4.5 terabytes, disk cache (shared) of approximately 20 terabytes

— Peak performance of 5 teraflops

= 2002 Tools

— Environment: Unix CLI (bash), Emacs or Vim editors, printf or TotalView debuggers
— Languages: C or Fortran with MPI and OpenMP
— Administration: IBM PSSP, Perspective, RSCT, SDR, ...

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o200 el

Delivered PERCS Prototype

= 2012 System

— 49,152 processors (each at 10x clock over Power3), 1,536 32-way diskless nodes, Linux

— Memory and performance at peta scales

= 2012 Tools
— Environment: Eclipse PTP, scalable parallel debuggers, parallel analysis tools, ...

— Languages: PGAS languages (X10, UPC), along with much improved compilers, advanced
optimizations, ...

— Administration: enhanced xCAT,TEAL, ...

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

8772 i e
Computing Unscaled Gain

= Create detailed breakdown of workflow subtasks
— 194 programming subtasks
— 54 system administration subtasks

= For each subtask in workflow dataset

— Compute estimate of time required to complete the subtask
— For Workflow 5, further weight by subtask monthly frequency and success rate

= Compute unscaled gain as follows:
— totalTime ,y, = > subtaskTime 544,
— totalTime 554, = > subtaskTime 545
— productivityGain ;o yorow = totalTime 40, / totalTime ,44,

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o200 el

Data Summary

Workflow 1

— 67 semi-structured interviews conducted at 8 institutions
— 34 incidents reported in sufficient detail to serve as baseline, totaling 1103 hours

Workflow 2

— 6 compact codes written in both C/MPI and in X10 (12 codes total)
— Developed by skilled C / X10 programmer over course of a year
— Time to first parallel run, code size, number and nature of bugs recorded

Workflow 4

— 61 semi-structured interviews conducted at 5 institutions
— 34 incidents (15 porting, 13 optimizing, 6 scaling) in baseline, totaling 8576 hours

Workflow 5

— Interviews with NERSC system administrators, Seaborg logs, administration website

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Lvase I
soshad- EEE—-
PERCS

Workflow 1 — Large Codes

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o2 i R
Workflow 1 — Methodology

= Analyzed 34 detailed debugging incidents

— Average incident length 28 hours (range of 11 minutes to 480 hours)
— Average code size 680 KLOCs (range of 1 to 2000 KLOCs)

— Total time spent in these baseline incidents was 1103 hours

— 68% locating bug (25% serial debugging, 43% parallel debugging)

— 16% exploring code, writing code, fixing the bug

= Estimated 2012 subtask times from gains due to

— Reductions in compiling and test run times

— Enhanced support in PERCS tools for finding and fixing bugs

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Luvase I
o2 had -
PERCS

Workflow 1 — Data Example

m Category Subcategory m Time 2002 Time 2012 Details / Rationale

Debug P Discover Get assigned
bug
Get info Software Discussion with

familiarization colleagues

Getready Setup Code file

Debug P Locate Recompile to
run in debugger

Debug P Locate Set up
debugger

Debug P Locate Run code to
debug

20 minutes

1 minute

10 minutes

2 minutes

1 minute

0.5 minutes

Via user services
Requests code
Copy code file
Due to compiler

speed up

Set up debugger
on 64 processors

Due to run time
speed up

Underflow, 3.5 total person hours, 14 years experience, 20 top-level steps

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

P50 V% ¢ .
Workflow 1 — Unscaled Gain

= 2002

— 1103 hours to successfully find and fix bugs in 34 incidents

= 2012

— 448 hours estimated to successfully find and fix these same bugs using
PERCS technologies and tools

Estimated unscaled productivity gain: 2.5x

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Lvase I
soshad- EEE—-
PERCS

Workflow 2 — Compact Codes

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o2 i R
Workflow 2 — Methodology

= 6 coding problems

— SSCA 1 (first kernel)

— SSCA 2 (four kernels)

— Consumer-Producer (one server managing shared work queue)
— UTS (multiple work queues with work stealing)

— Floyd'’s Algorithm (minimum weight path computation)

— Discrete Fourier Transform (the one numeric problem)

= Developed by skilled C / X10 programmer using
— Circa 2002 environment with C/MPI, gdb where useful
— Circa 2012 environment with X10, X10DT plugin, no debugger

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o200 el

SSCA 1 Smith-Waterman Algorithm

Based on an application from bioinformatics comparing a pair of strings of
genes or strings of proteins to best align one against another

* Find best matching pair of
substrings

« Score mismatches according
to scoring matrix

« Gaps may be inserted in
either string but with penalty

« Easiest when one string
much shorter than the other

The optimal local alignment A
1S:
G

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o2 i R
Workflow 2 — Methodology

= 6 coding problems

— SSCA 1 (first kernel)

— SSCA 2 (four kernels)

— Consumer-Producer (one server managing shared work queue)
— UTS (multiple work queues with work stealing)

— Floyd'’s Algorithm (minimum weight path computation)

— Discrete Fourier Transform (the one numeric problem)

= Developed by skilled C / X10 programmer using
— Circa 2002 environment with C/MPI, gdb where useful
— Circa 2012 environment with X10, X10DT plugin, no debugger

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

P50 V% ¢ .
Workflow 2 — Unscaled Gain — Part 1

= C/MPI
— 10245 LOC over the 6 codes

— 129 days to develop 6 codes to first successful parallel run

= X10

— 6195 LOC over the 6 codes
— 39 days to develop 6 codes to first successful parallel run

Observed productivity gain due to X10 language and environment: 3.3x

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

P50 V% ¢ .
Workflow 2 — Unscaled Gain — Part 2

= C/MPI

— 129 days to develop 6 codes to first successful parallel run

= X10
— 22 days (reduced from 39) to develop with X10 debugger

Estimated gain with inclusion of X10 Parallel Debugger: 5.9x

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o200 el

Workflow 5 — System Administration

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o2 i R
Workflow 5 — Methodology

= Compiled 2002 baseline subtasks
— Interviewed Seaborg system specialists, other NERSC administrators
— Interviewed key IBM Seaborg support personnel
— Analyzed Seaborg system administration website, other documents
— Primary monthly work consisted of 54 subtasks

— Total monthly time spent in Seaborg administration was 79 hours

= Estimated 2012 subtask times from gains due to

— Elimination of 2002 subtasks (e.g., those related to node disks)

— Speed up of remaining tasks (e.g., node boot, status monitoring)

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

LPuase F
#efé
PERCS

Workflow 5 — 2002 Subtasks

Security, 1%

Scfiware update,
4%
Prodlem " oamm
resolution, 6% _~"
/

\
/

\
tartupand
shutdown, 20%

\

| Mid-operation
| tasks, 20%

Testing updates,
11%

Hardware \
replacement, 7%

3%

Fi ot /Ba:kup and
& irmware update, - restore, 6%
22%

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002

P50 V% ¢ .
Workflow 5 — Unscaled Gain

= 2002

— 79 hours per month administering Seaborg

= 2012
— 26 hours per month estimated to administer PERCS prototype

Estimated unscaled productivity gain: 3.0x

Lvase I
soshad- EEE—-
PERCS

Productivity Contributors

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o200 el

Productivity Contributors — Administration

Diskless nodes

— Eliminating many node rebuilding and OS updating tasks

Central system database and hierarchical management network

— Speeding and simplifying status reporting and management information flow through cluster

Improved component reliability and automatic failover

— Reducing need for system maintenance

Advanced system management tools

— Simplifying complex administration tasks

Increased processor speed

— Reducing time needed for node boot and other administration tasks

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o0 il R
Productivity Contributors — Programming

= Faster compilations and test runs

— Reducing time on task and increasing focus

= Improved interaction with code and documentation

— Minimizing distractions from core programming tasks

= PGAS languages and X10

— Improving fit to both underlying architecture and natural structure of solutions

= Refactoring support

— Making code restructuring more efficient

= Advanced compiler optimizations

— Reducing need for hand tuning and increasing code portability

= Scalable parallel debugger

— Allowing focus on outliers and providing coherent visualizations at petascale

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

o0 il R
Concluding Thoughts

= Petascale productivity

— removing non-essential complexity
— providing state of the practice development tools
— hiding low level programming details

— exploiting faster cores

= Exascale productivity
— era of “easy” gains may be over
— may well involve fundamentally different models of computation

— may create possibility of solving entirely new kinds of problems

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

