
This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

A Quantitative View of
Productivity

John Richards
IBM Watson Group

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Outline

§ Why measure productivity

§ How we measured PERCS productivity

§ What contributed to PERCS productivity gains

§ What is fundamentally different at exascale

2

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Why Measure HPC Productivity?

§ Examination/engineering of whole system

§ Discovery of otherwise hidden tradeoffs

§ Prioritization of research and development

3

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 4

PERCS Productivity Assessment

WF 5 – System Administration

WF 4 – Porting & Optimization

WF 2 – Compact Codes

WF 1 – Multimodule Codes

Phase 1 start (2002) Phase 3 end (2012) compared with

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

2002 Baseline Environment
§  2002 System – NERSC-3 Phase 2 aka “Seaborg”

–  3,328 processors (3,008 available for computation), 208 16-way compute nodes, AIX 4.x

–  Main memory of 4.5 terabytes, disk cache (shared) of approximately 20 terabytes

–  Peak performance of 5 teraflops

§  2002 Tools
–  Environment: Unix CLI (bash), Emacs or Vim editors, printf or TotalView debuggers

–  Languages: C or Fortran with MPI and OpenMP

–  Administration: IBM PSSP, Perspective, RSCT, SDR, ...

5

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Delivered PERCS Prototype
§  2012 System

–  49,152 processors (each at 10x clock over Power3), 1,536 32-way diskless nodes, Linux

–  Memory and performance at peta scales

§  2012 Tools
–  Environment: Eclipse PTP, scalable parallel debuggers, parallel analysis tools, …

–  Languages: PGAS languages (X10, UPC), along with much improved compilers, advanced
optimizations, …

–  Administration: enhanced xCAT,TEAL, ...

6

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 7

Computing Unscaled Gain
§  Create detailed breakdown of workflow subtasks

–  194 programming subtasks
–  54 system administration subtasks

§  For each subtask in workflow dataset
–  Compute estimate of time required to complete the subtask
–  For Workflow 5, further weight by subtask monthly frequency and success rate

§  Compute unscaled gain as follows:
–  totalTime 2002 = ∑ subtaskTime 2002
–  totalTime 2012 = ∑ subtaskTime 2012
–  productivityGain per workflow = totalTime 2002 / totalTime 2012

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 8

Data Summary
§  Workflow 1

–  67 semi-structured interviews conducted at 8 institutions
–  34 incidents reported in sufficient detail to serve as baseline, totaling 1103 hours

§  Workflow 2
–  6 compact codes written in both C/MPI and in X10 (12 codes total)
–  Developed by skilled C / X10 programmer over course of a year
–  Time to first parallel run, code size, number and nature of bugs recorded

§  Workflow 4
–  61 semi-structured interviews conducted at 5 institutions
–  34 incidents (15 porting, 13 optimizing, 6 scaling) in baseline, totaling 8576 hours

§  Workflow 5
–  Interviews with NERSC system administrators, Seaborg logs, administration website

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 9

Workflow 1 – Large Codes

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 1 – Methodology

§  Analyzed 34 detailed debugging incidents
–  Average incident length 28 hours (range of 11 minutes to 480 hours)

–  Average code size 680 KLOCs (range of 1 to 2000 KLOCs)

–  Total time spent in these baseline incidents was 1103 hours
–  68% locating bug (25% serial debugging, 43% parallel debugging)

–  16% exploring code, writing code, fixing the bug

§  Estimated 2012 subtask times from gains due to
–  Reductions in compiling and test run times

–  Enhanced support in PERCS tools for finding and fixing bugs

10

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 1 – Data Example

11

Phase Category Subcategory Step # Time 2002 Time 2012 Details / Rationale

Debug P Discover Get assigned
bug

1 -- -- Via user services

Get info Software
familiarization

Discussion with
colleagues

2 -- -- Requests code

Get ready Setup Code file 3 -- -- Copy code file

Debug P Locate Recompile to
run in debugger

4 20 minutes 2 minutes Due to compiler
speed up

Debug P Locate Set up
debugger

5 1 minute 1 minute Set up debugger
on 64 processors

Debug P Locate Run code to
debug

6 10 minutes 0.5 minutes Due to run time
speed up

…

Underflow, 3.5 total person hours, 14 years experience, 20 top-level steps

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 1 – Unscaled Gain

§  2002
–  1103 hours to successfully find and fix bugs in 34 incidents

§  2012
–  448 hours estimated to successfully find and fix these same bugs using

PERCS technologies and tools

Estimated unscaled productivity gain: 2.5x

12

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 13

Workflow 2 – Compact Codes

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 2 – Methodology

§  6 coding problems
–  SSCA 1 (first kernel)

–  SSCA 2 (four kernels)

–  Consumer-Producer (one server managing shared work queue)

–  UTS (multiple work queues with work stealing)

–  Floyd’s Algorithm (minimum weight path computation)

–  Discrete Fourier Transform (the one numeric problem)

§  Developed by skilled C / X10 programmer using
–  Circa 2002 environment with C/MPI, gdb where useful

–  Circa 2012 environment with X10, X10DT plugin, no debugger

14

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 15

SSCA 1 Smith-Waterman Algorithm
Based on an application from bioinformatics comparing a pair of strings of
genes or strings of proteins to best align one against another

•  Find best matching pair of
substrings

•  Score mismatches according
to scoring matrix

•  Gaps may be inserted in
either string but with penalty

•  Easiest when one string
much shorter than the other

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 2 – Methodology

§  6 coding problems
–  SSCA 1 (first kernel)

–  SSCA 2 (four kernels)

–  Consumer-Producer (one server managing shared work queue)

–  UTS (multiple work queues with work stealing)

–  Floyd’s Algorithm (minimum weight path computation)

–  Discrete Fourier Transform (the one numeric problem)

§  Developed by skilled C / X10 programmer using
–  Circa 2002 environment with C/MPI, gdb where useful

–  Circa 2012 environment with X10, X10DT plugin, no debugger

16

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 2 – Unscaled Gain – Part 1

§  C/MPI
–  10245 LOC over the 6 codes

–  129 days to develop 6 codes to first successful parallel run

§  X10
–  6195 LOC over the 6 codes

–  39 days to develop 6 codes to first successful parallel run

Observed productivity gain due to X10 language and environment: 3.3x

17

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 2 – Unscaled Gain – Part 2

§  C/MPI
–  129 days to develop 6 codes to first successful parallel run

§  X10
–  22 days (reduced from 39) to develop with X10 debugger

Estimated gain with inclusion of X10 Parallel Debugger: 5.9x

18

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 19

Workflow 5 – System Administration

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 5 – Methodology

§  Compiled 2002 baseline subtasks
–  Interviewed Seaborg system specialists, other NERSC administrators
–  Interviewed key IBM Seaborg support personnel

–  Analyzed Seaborg system administration website, other documents

–  Primary monthly work consisted of 54 subtasks

–  Total monthly time spent in Seaborg administration was 79 hours

§  Estimated 2012 subtask times from gains due to
–  Elimination of 2002 subtasks (e.g., those related to node disks)

–  Speed up of remaining tasks (e.g., node boot, status monitoring)

20

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 5 – 2002 Subtasks

21

!

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Workflow 5 – Unscaled Gain

§ 2002
–  79 hours per month administering Seaborg

§ 2012
–  26 hours per month estimated to administer PERCS prototype

Estimated unscaled productivity gain: 3.0x

22

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002. 23

Productivity Contributors

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Productivity Contributors – Administration
§  Diskless nodes

–  Eliminating many node rebuilding and OS updating tasks

§  Central system database and hierarchical management network
–  Speeding and simplifying status reporting and management information flow through cluster

§  Improved component reliability and automatic failover
–  Reducing need for system maintenance

§  Advanced system management tools
–  Simplifying complex administration tasks

§  Increased processor speed
–  Reducing time needed for node boot and other administration tasks

24

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Productivity Contributors – Programming
§  Faster compilations and test runs

–  Reducing time on task and increasing focus

§  Improved interaction with code and documentation
–  Minimizing distractions from core programming tasks

§  PGAS languages and X10
–  Improving fit to both underlying architecture and natural structure of solutions

§  Refactoring support
–  Making code restructuring more efficient

§  Advanced compiler optimizations
–  Reducing need for hand tuning and increasing code portability

§  Scalable parallel debugger
–  Allowing focus on outliers and providing coherent visualizations at petascale

25

This work was supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002.

Concluding Thoughts

§  Petascale productivity
–  removing non-essential complexity

–  providing state of the practice development tools

–  hiding low level programming details

–  exploiting faster cores

§  Exascale productivity
–  era of “easy” gains may be over

–  may well involve fundamentally different models of computation

–  may create possibility of solving entirely new kinds of problems

26

