
1

Crosscutting Topics

Jeffrey K. Hollingsworth

University of Maryland
hollings@cs.umd.edu

mailto:hollings@cs.umd.edu

2

Cross Cutting Themes

 Getting the information we need

 Hiding & Exposing Information

 Effectively Acting on the Information

 By tools (auto-tuners)

 By developers

 By application teams

 Making sure the tools work

 Meet the users needs

 Run at scale

3

My Career in Tools

 IPS-2 (End-to-end Performance Tool)

 Trace-based, post-morterm processing of data

 Assembly level instrumentation

 GUI to make things “easy”

 Paradyn (End-to-end Performance Tool)

 Using Dynamic Instrumentation for low overhead

 Performance Consultant to automate finding bugs

 GUI to make things “easy”

 Dyninst (API for tool builders)
 Use Dynamic Instrumentation of Paradyn

 Make it a component

 *API (Componentized APIs)
 Split useful components out of Dynisnt

 Active Harmony (Auto tuning tools)
 Online automatic code generation based on measurements

4

One Approach to Getting the Data

Courtesy Martin Schulz, LLNL – Piper Project

Q
u

er
y

A
P

I

Application

Hardware

CPU NUMA Netw.

OS/Comm.

MPI Thrds. Tasks

Prg. Model

Msg. PGAS DSL

Libraries

A
d

at
iv

e
In

st
ru

m
en

ta
ti

o
n

St
ac

k-
w

id
e

D
at

a
C

o
lle

ct
io

n
 &

Se

m
an

ti
c

C
o

rr
el

at
io

n

Online
Data

Analysis
Techniques

Application & System Adaptivity

Adapting Tools & Applications

Interactive
Visualization
Techniques

Data Analysis
& Reporting

Tools

Dynamic
Adaptation &
Tuning Tools

Dist.
Data
Store

5

Hiding and Exposing Information

 Goal: Hide everything that is not needed

 The hard part: What is needed? (and when)?

 Layers of abstractions

 Start with programmers abstracts

 Pull back layers as needed

 Stop when get to transistors

6

Issues In Getting the Data

 Can you collect it?

 Hardware events

 OS “help” actions

 Is it available to the tools

 Permissions

 All that other Stuff

 Storing it

 Moving

 Sorting through it

7

Acting On The Data: Auto tuning

 Goal: Maximize achieved performance

 Problems:

 Large number of parameters to tune

 Shape of objective function unknown

 Multiple libraries and coupled applications

 Analytical model may not be available

 Requirements:

 Runtime tuning for long running programs

 Don’t try too many configurations

 Avoid gradients

8

Active Harmony

 Runtime performance optimization

 Can also support training runs

 Automatic library selection (code)

 Monitor library performance

 Switch library if necessary

 Automatic performance tuning (parameter)

 Monitor system performance

 Adjust runtime parameters

 Hooks for Compiler Frameworks

 Working to integrate USC/ISI Chill

 Looking at others too

9

Outlined Code

for (si = 0; si < stencil_size; si++)

 for (kk = 0; kk < hypre__mz; kk++)

 for (jj = 0; jj < hypre__my; jj++)

 for (ii = 0; ii < hypre__mx; ii++)

 rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=

 ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+

 (((A->data_indices)[i])[si])])*

 (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHiLL Transformation Recipe

permute([2,3,1,4])

tile(0,4,TI)

tile(0,3,TJ)

tile(0,3,TK)

unroll(0,6,US)

unroll(0,7,UI)

Constraints on Search

0 ≤ TI , TJ, TK ≤ 122

0 ≤ UI ≤ 16

0 ≤ US ≤ 10

compilers ∈ {gcc, icc}

SMG2000 Optimization

Search space:
1223x16x10x2 = 581M points

10

SMG2000 Search and Results

Selected parameters:
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc

Performance gain on residual computation:

2.37X

Performance gain on full app:

27.23% improvement

Parallel search evaluates 490 points and converges in 20 steps

11

Compiling New Code Variants at Runtime

Outlined

code-section

Code Generation Tools

Code Server

v1s v2s vNs

compile

r

compile

r

compile

r

v1s.so

Active Harmony

v2s.so
vNs.so

Performance

Measurements (PM)

stall_phase

READY Signal

Code Transformation Parameters

PM1

PM2 PMN

Application

Execution timeline

SS1 SS2 SSN

PM1, PM2, … PMN Search Steps (SS)

Application

Harmony Timeline

12

Online Code Generation Results

 Two platforms

 umd-cluster (64 nodes, Intel Xeon dual-core nodes) –

myrinet interconnect

 Carver (1120 compute nodes, Intel Nehalem. two quad

core processors) – infiniband interconnect

 Code servers

 UMD-cluster – local idle machines

 Carver – outsourced to a machine at umd

 Codes

 Poisson Solver

 PMLB Parallel Multi-block Lattice Boltzman

 SMG2000

12

13

PMLB (Carver and Hopper Results)

 Online harmonized code runs

on 512 and 1024 cores

 On average, 1.12 times faster

 Best net speedup: 1.46

 Post harmony

 On average, 1.32 times faster

13

Net speedup: 1.21

14

Cross Cutting Issue: When/What To Optimize

 Example, a dense matrix multiply kernel

 Various Options:

 Original program: 30.1 sec

 Hand Tuned (by developer): 11.4 sec

 Auto-tuned of hand-tuned: 15.9 sec

 Auto-tuned original program: 8.5 sec

 What Happened?

 Hand tuning prevented analysis

 Auto-tuned transformations were then not possible

15

Uncoordinated Auto Tuning is a Problem

 Need auto-tuning at many levels

 Application

 Runtime

 Compiler

 Separate auto-tuners are a problem

 Who is driving at any given time?

 Which change really mattered?
Who drives all the auto-tuning?

 Need coordinated auto-tuning at multiple levels

 First order: crossing guard

 Allow only one type of auto-tuning to proceed at a time

 Second order: conductor

 Coordinates simultaneous optimization of multiple levels

Crossing guards provide serialization Conductors coordinate parallel auto-tuners

16

Why Getting Tools To Users Is Hard

 Distributed, University & Lab based Groups

 Multiple Sites

 Changes in staffing

 Balance Research vs. Production Code

 Need to keep pushing the envelop

 User feedback is source of many new ideas

 Testing

 Code always changing

 Environment keeps changing

 Hardware,

 System Software: OS, Compilers

 3rd party tools

 Regular testing as scale is hard

 “I need 100k cores every night at 3:00 AM”

17

It Takes a Village!

1993 1994 1995 1997 1998 1999 2000 2001 2003 2004 2005 2006 2008 2009 2010 2011 2013 2014

hollings
jcargill
markc

newhall
karavan

rbi
krisna

tamches
mirg
naim

zhichen
lzheng

sec
buck

hseom
tung

ssuen
czhang

wylie
nash

mcheyney
pcroth

csserra
zandy

cain
davisj
bernat

nick
schendel

chambrea
altinel
mihai

tikir
jasonxie

willb
gurari

wxd
shergali

ning
chadd
beyerj

gaburici
darnold

jaw
cortes
tlmiller
rchen

mjbrim
mikem
jodom

igor
eli

lharris
legendre

gquinn
pack
rutar

bpellin
nater

cooksey
tugrul

giri
bill

roundy
mlam

carl
lam

madhavi
jolly

qium
taf

mcnulty
jacobson

kumar
daeschli
wenbin
xmeng
welton
jistone

zuyu
samanas

wcohen

• Total of 82 people have committed code
• One person was not born on first commit

18

The Code Base

18

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

P
h
ys

ic
a
l
S

L
O

C

Source Lines of Code (SLOC) vs Time

symlite

elf

dwarf

patchAPI

dynC_API

dataflowAPI

parseAPI

symEval

proccontrol

depGraphAPI

DDG

stackwalk

instructionAPI

dynutil

symtabAPI

dyner

dyninstAPI_RT

dyninstAPI

common

19

Code Always Seems to Get Bigger

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

v4.0 v4.1 v4.2.1 v5.0 v5.1 v5.2 v6.1 v7.0.1

S
iz

e
 (

k
B

)

Runtime Library Size (w/Dependents) vs Annual Release

Debug Info

Text+Data

19

20

Testing

 Paradyn Testing

 Required hands on developer

 Ad-hoc collection of programs to try out

 Dyninst Testing

 Daily automated unit testing

 75 test cases (5 tests with sub-parts) & 9 platforms (processor/OS)

 10 other factors (compiler, optimization, pic, rewriter, threading, …)

 Results stored in a DB & posted on web (up to 90,000 tests/day)

 Developers should run test cases before commit

 *API Testing

 Daily automated unit testing (additional 69 tests)

 Test more than just correctness

 Memory size of mutator

 Runtime of test cases

 Moving to Testing before commit completes

21

Closing Thoughts

 Execution Time Productivity Requires

 Deep Understanding of the machine

 Hiding the data until it is needed

 Execution Time Productivity Tools require

 Access all the information in the machine

 Long term commitment

 Ability to regularly test at scale

 Tools require time to mature

 Must balance steady evolution vs. revolution

