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Cross Cutting Themes 

 Getting the information we need 

 Hiding & Exposing Information 

 Effectively Acting on the Information 

 By tools (auto-tuners) 

 By developers 

 By application teams 

 Making sure the tools work 

 Meet the users needs 

 Run at scale  
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My Career in Tools 

 IPS-2 (End-to-end Performance Tool) 

 Trace-based, post-morterm processing of data 

 Assembly level instrumentation 

 GUI to make things “easy” 

 Paradyn (End-to-end Performance Tool) 

 Using Dynamic Instrumentation for low overhead 

 Performance Consultant to automate finding bugs 

 GUI to make things “easy” 

 Dyninst (API for tool builders) 
 Use Dynamic Instrumentation of Paradyn  

 Make it a component 

 *API (Componentized APIs) 
 Split useful components out of Dynisnt 

 Active Harmony (Auto tuning tools) 
 Online automatic code generation based on measurements 
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One Approach to Getting the Data 

Courtesy Martin Schulz, LLNL – Piper Project 
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Hiding and Exposing Information 

 Goal: Hide everything that is not needed 

 

 The hard part:  What is needed?  (and when)? 

 
 Layers of abstractions 

 Start with programmers abstracts 

 Pull back layers as needed 

 Stop when get to transistors 
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Issues In Getting the Data 

 Can you collect it? 

 Hardware events 

 OS “help” actions 

 Is it available to the tools 

 Permissions 

 All that other Stuff 

 Storing it 

 Moving 

 Sorting through it 
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Acting On The Data: Auto tuning 

 Goal: Maximize achieved performance 

 Problems: 

 Large number of parameters to tune 

 Shape of objective function unknown 

 Multiple libraries and coupled applications 

 Analytical model may not be available 

 Requirements: 

 Runtime tuning for long running programs 

 Don’t try too many configurations 

 Avoid gradients 
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Active Harmony  

 Runtime performance optimization 

 Can also support training runs 

 Automatic library selection (code) 

 Monitor library performance 

 Switch library if necessary 

 Automatic performance tuning (parameter) 

 Monitor system performance 

 Adjust runtime parameters 

 Hooks for Compiler Frameworks 

 Working to integrate USC/ISI Chill 

 Looking at others too 
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Outlined Code 

for (si = 0; si < stencil_size; si++)  

    for (kk = 0; kk < hypre__mz; kk++)  

        for (jj = 0; jj < hypre__my; jj++)  

            for (ii = 0; ii < hypre__mx; ii++)  

                rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=  

                    ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+ 

                     (((A->data_indices)[i])[si])])*  

                     (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])]));  

CHiLL Transformation Recipe  

permute([2,3,1,4]) 

tile(0,4,TI) 

tile(0,3,TJ) 

tile(0,3,TK)  

unroll(0,6,US)  

unroll(0,7,UI) 

Constraints on Search 

0 ≤ TI , TJ, TK ≤ 122  

0 ≤ UI ≤ 16  

0 ≤ US ≤ 10  

compilers ∈ {gcc, icc}  

SMG2000 Optimization 

Search space:  
1223x16x10x2 = 581M points 
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SMG2000 Search and Results 

Selected parameters: 
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc 

Performance gain on residual computation: 

2.37X  

Performance gain on full app:  

27.23% improvement 

Parallel search evaluates 490 points and converges in 20 steps 
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Compiling New Code Variants at Runtime 
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Online Code Generation Results 

 Two platforms 

 umd-cluster (64 nodes, Intel Xeon dual-core nodes) – 

myrinet interconnect 

 Carver (1120 compute nodes, Intel Nehalem. two quad 

core processors) – infiniband interconnect 

 Code servers 

 UMD-cluster – local idle machines 

 Carver – outsourced to a machine at umd 

 Codes 

 Poisson Solver 

 PMLB Parallel Multi-block Lattice Boltzman 

 SMG2000 

12 
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PMLB (Carver and Hopper Results) 

 Online harmonized code runs 

on 512 and 1024 cores 

 On average, 1.12 times faster 

 Best net speedup: 1.46 

 

 Post harmony 

 On average, 1.32 times faster 

13 

 

 

 

 

 

 

 

 

 

Net speedup: 1.21 



14 

Cross Cutting Issue: When/What To Optimize 

 Example, a dense matrix multiply kernel 

 Various Options: 

 Original program: 30.1 sec 

 Hand Tuned (by developer): 11.4 sec 

 Auto-tuned of hand-tuned: 15.9 sec 

 Auto-tuned original program: 8.5 sec 

 What Happened? 

 Hand tuning prevented analysis  

 Auto-tuned transformations were then not possible 
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Uncoordinated Auto Tuning is a Problem 

 Need auto-tuning at many levels 

 Application 

 Runtime 

 Compiler 

 Separate auto-tuners are a problem 

 Who is driving at any given time? 

 Which change really mattered? 
Who drives all the auto-tuning? 

 Need coordinated auto-tuning at multiple levels 

 First order: crossing guard 

 Allow only one type of auto-tuning to proceed at a time 

 Second order: conductor 

 Coordinates simultaneous optimization of multiple levels 

Crossing guards provide serialization Conductors coordinate parallel auto-tuners 
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Why Getting Tools To Users Is Hard 

 Distributed, University & Lab based Groups 

 Multiple Sites 

 Changes in staffing 

 Balance Research vs. Production Code 

 Need to keep pushing the envelop 

 User feedback is source of many new ideas 

 Testing 

 Code always changing 

 Environment keeps changing  

 Hardware,  

 System Software: OS, Compilers 

 3rd party tools 

 Regular testing as scale is hard 

 “I need 100k cores every night at 3:00 AM” 
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It Takes a Village! 
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• Total of 82 people have committed code 
• One person was not born on first commit 
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The Code Base 
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Code Always Seems to Get Bigger 
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Testing 

 Paradyn Testing 

 Required hands on developer 

 Ad-hoc collection of programs to try out 

 Dyninst Testing 

 Daily automated unit testing  

 75 test cases (5 tests with sub-parts) & 9 platforms (processor/OS) 

 10 other factors (compiler, optimization, pic, rewriter, threading, …) 

 Results stored in a DB & posted on web (up to 90,000 tests/day) 

 Developers should run test cases before commit 

 *API Testing 

 Daily automated unit testing (additional 69 tests) 

 Test more than just correctness 

 Memory size of mutator 

 Runtime of test cases 

 Moving to Testing before commit completes 
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Closing Thoughts 

 Execution Time Productivity Requires 

 Deep Understanding of the machine 

 Hiding the data until it is needed 

 Execution Time Productivity Tools require 

 Access all the information in the machine 

 Long term commitment 

 Ability to regularly test at scale 

 Tools require time to mature 

 Must balance steady evolution vs. revolution 


