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Cross Cutting Themes

= Getting the information we need
= Hiding & Exposing Information
= Effectively Acting on the Information
= By tools (auto-tuners)
= By developers
= By application teams
= Making sure the tools work
= Meet the users needs
= Run at scale
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My Career in Tools

IPS-2 (End-to-end Performance Tool)
= Trace-based, post-morterm processing of data
= Assembly level instrumentation
= GUI to make things “easy”
Paradyn (End-to-end Performance Tool)
= Using Dynamic Instrumentation for low overhead
= Performance Consultant to automate finding bugs
= GUI to make things “easy”
Dyninst (API for tool builders)
= Use Dynamic Instrumentation of Paradyn
= Make it a component
*API (Componentized APIs)
= Split useful components out of Dynisnt
Active Harmony (Auto tuning tools)
= Online automatic code generation based on measurements
yn
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One Approach to Getting the Data

Application & System Adaptivity
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Adapting Tools & Applications

Courtesy Martin Schulz, LLNL — Piper Project yn
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Hiding and Exposing Information

= Goal: Hide everything that is not needed

= The hard part: What is needed? (and when)?

= Layers of abstractions
= Start with programmers abstracts
= Pull back layers as needed
= Stop when get to transistors
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Issues In Getting the Data

= Can you collect it?
= Hardware events
= OS “help” actions
= |s it available to the tools
= Permissions
= All that other Stuff
= Storing it
= Moving

= Sorting through it
Dyn
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Acting On The Data: Auto tuning

= Goal: Maximize achieved performance

= Problems:
= Large number of parameters to tune

= Shape of objective function unknown
= Multiple libraries and coupled applications
= Analytical model may not be available

= Requirements:
= Runtime tuning for long running programs
= Don’t try too many configurations
= Avoid gradients
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Active Harmony

= Runtime performance optimization
= (Can also support training runs

= Automatic library selection (code)
= Monitor library performance
= Switch library if necessary

= Automatic performance tuning (parameter)
= Monitor system performance
= Adjust runtime parameters

= Hooks for Compiler Frameworks
= Working to integrate USC/ISI Chill
= Looking at others too
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SMG2000 Optimization

Outlined Code
for (si = 0; si < stencil_size; si++)
for (kk = 0; kk < hypre__mz; kk++)
for (j = 0; jj < hypre__my; jj++)
for (il = 0; il < hypre___mx; ii++)
rp[((ri+i)+(jj*hypre__ sy3))+(kk*hypre  sz3)] -=

((Ap_O[((i+(j*hypre__sy1))+ (kk*hypre__sz1))+
(((A->data_indices)[i][si])])*
(xp_O[((+(1*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])]));

CHILL Transformation Recipe Constraints on Search

permute([2,3,1,4]) 0<TIl, TJ, TK=122

tile(0,4,TI) 0<Ul<16

tile(0,3,TJ) 0=<US=<10

tile(0,3,TK) compilers € {gcc, icc}

unroll(0,6,US)

unrol(0,7,uny ~ Search space: D
1223x16x10x2 = 581M points n
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SMG2000 Search and Results

Parallel search evaluates 490 points and converges in 20 steps

FParallel Rank Ordering Algorithm - Search Evelution

0.7

Selected parameters:

TI=122,TJ=106,TK=56,Ul=8,US=3,Comp=gcc
Performance gain on residual computation:

2.37X

Performance gain on full app:

27.23% improvement
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Compiling New Code Variants at Runtime
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Online Code Generation Results

= Two platforms

= umd-cluster (64 nodes, Intel Xeon dual-core nodes) —
myrinet interconnect

= Carver (1120 compute nodes, Intel Nehalem. two quad
core processors) — infiniband interconnect

= Code servers
= UMD-cluster — local idle machines
= Carver — outsourced to a machine at umd

= Codes
= Poisson Solver
= PMLB Parallel Multi-block Lattice Boltzman
= SMG2000
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PMLB (Carver and Hopper Results)

PMLB Application (512 corss, Carver)
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= Online harmonized code runs
on 512 and 1024 cores

= Onaverage, 1.12 times faster
= Best net speedup: 1.46

= Post harmony

= On average, 1.32 times faster
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PMLE Application (1024 cores, Hopper)

Net speedup: 1.21
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Cross Cutting Issue: When/What To Optimize

= Example, a dense matrix multiply kernel

= Various Options:
= Original program: 30.1 sec
= Hand Tuned (by developer): 11.4 sec
= Auto-tuned of hand-tuned: 15.9 sec
= Auto-tuned original program: 8.5 sec

= What Happened?

= Hand tuning prevented analysis
= Auto-tuned transformations were then not possible
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Uncoordinated Auto Tuning is a Problem

= Need auto-tuning at many levels

= Application
= Runtime
= Compiler

= Separate auto-tuners are a problem
= Who is driving at any given time?
= Which change really mattered?

Who drives all the auto-tuning?

= Need coordinated auto-tuning at multiple levels
=  First order: crossing guard
= Allow only one type of auto-tuning to proceed at a time

=  Second order: conductor
= Coordinates simultaneous optimization of multiple levels
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Why Getting Tools To Users Is Hard

= Distributed, University & Lab based Groups
=  Multiple Sites
= Changes in staffing

= Balance Research vs. Production Code
= Need to keep pushing the envelop
= User feedback is source of many new ideas

= Testing

= Code always changing

= Environment keeps changing
= Hardware,
= System Software: OS, Compilers
= 3 party tools

= Regular testing as scale is hard D n
= “| need 100k cores everygight at 3:00 AM” inst



It Takes a Village!
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The Code Base

Source Lines of Code (SLOC) vs Time
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Code Always Seems to Get Bigger

Runtime Library Size (w/Dependents) vs Annual Release
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esting

= Paradyn Testing
= Required hands on developer
= Ad-hoc collection of programs to try out

= Dyninst Testing
= Daily automated unit testing
= 75 test cases (5 tests with sub-parts) & 9 platforms (processor/OS)
= 10 other factors (compiler, optimization, pic, rewriter, threading, ...)
= Results stored in a DB & posted on web (up to 90,000 tests/day)

= Developers should run test cases before commit

= *API Testing
= Daily automated unit testing (additional 69 tests)
= Test more than just correctness

= Memory size of mutator
= Runtime of test cases

= Moving to Testing before commit completes Dyn
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Closing Thoughts

= Execution Time Productivity Requires
= Deep Understanding of the machine
= Hiding the data until it is needed

= Execution Time Productivity Tools require
= Access all the information in the machine
= Long term commitment
= Ability to regularly test at scale

= Tools require time to mature
= Must balance steady evolution vs. revolution
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