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Cross Cutting Themes 

 Getting the information we need 

 Hiding & Exposing Information 

 Effectively Acting on the Information 

 By tools (auto-tuners) 

 By developers 

 By application teams 

 Making sure the tools work 

 Meet the users needs 

 Run at scale  
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My Career in Tools 

 IPS-2 (End-to-end Performance Tool) 

 Trace-based, post-morterm processing of data 

 Assembly level instrumentation 

 GUI to make things “easy” 

 Paradyn (End-to-end Performance Tool) 

 Using Dynamic Instrumentation for low overhead 

 Performance Consultant to automate finding bugs 

 GUI to make things “easy” 

 Dyninst (API for tool builders) 
 Use Dynamic Instrumentation of Paradyn  

 Make it a component 

 *API (Componentized APIs) 
 Split useful components out of Dynisnt 

 Active Harmony (Auto tuning tools) 
 Online automatic code generation based on measurements 
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One Approach to Getting the Data 

Courtesy Martin Schulz, LLNL – Piper Project 

Q
u

er
y 

A
P

I 

Application 
 

Hardware 

CPU NUMA Netw. 

OS/Comm. 

MPI Thrds. Tasks 

Prg. Model 

Msg. PGAS DSL 

Libraries 

A
d

at
iv

e 
In

st
ru

m
en

ta
ti

o
n

 

St
ac

k-
w

id
e 

D
at

a 
C

o
lle

ct
io

n
 &

 
Se

m
an

ti
c 

C
o

rr
el

at
io

n
 
Online 
Data 

Analysis 
Techniques 

Application & System Adaptivity 

Adapting Tools & Applications 

Interactive 
Visualization 
Techniques 

Data Analysis 
& Reporting 

Tools 

Dynamic 
Adaptation & 
Tuning Tools 

Dist. 
Data 
Store 



5 

Hiding and Exposing Information 

 Goal: Hide everything that is not needed 

 

 The hard part:  What is needed?  (and when)? 

 
 Layers of abstractions 

 Start with programmers abstracts 

 Pull back layers as needed 

 Stop when get to transistors 
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Issues In Getting the Data 

 Can you collect it? 

 Hardware events 

 OS “help” actions 

 Is it available to the tools 

 Permissions 

 All that other Stuff 

 Storing it 

 Moving 

 Sorting through it 
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Acting On The Data: Auto tuning 

 Goal: Maximize achieved performance 

 Problems: 

 Large number of parameters to tune 

 Shape of objective function unknown 

 Multiple libraries and coupled applications 

 Analytical model may not be available 

 Requirements: 

 Runtime tuning for long running programs 

 Don’t try too many configurations 

 Avoid gradients 
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Active Harmony  

 Runtime performance optimization 

 Can also support training runs 

 Automatic library selection (code) 

 Monitor library performance 

 Switch library if necessary 

 Automatic performance tuning (parameter) 

 Monitor system performance 

 Adjust runtime parameters 

 Hooks for Compiler Frameworks 

 Working to integrate USC/ISI Chill 

 Looking at others too 
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Outlined Code 

for (si = 0; si < stencil_size; si++)  

    for (kk = 0; kk < hypre__mz; kk++)  

        for (jj = 0; jj < hypre__my; jj++)  

            for (ii = 0; ii < hypre__mx; ii++)  

                rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=  

                    ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+ 

                     (((A->data_indices)[i])[si])])*  

                     (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])]));  

CHiLL Transformation Recipe  

permute([2,3,1,4]) 

tile(0,4,TI) 

tile(0,3,TJ) 

tile(0,3,TK)  

unroll(0,6,US)  

unroll(0,7,UI) 

Constraints on Search 

0 ≤ TI , TJ, TK ≤ 122  

0 ≤ UI ≤ 16  

0 ≤ US ≤ 10  

compilers ∈ {gcc, icc}  

SMG2000 Optimization 

Search space:  
1223x16x10x2 = 581M points 
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SMG2000 Search and Results 

Selected parameters: 
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc 

Performance gain on residual computation: 

2.37X  

Performance gain on full app:  

27.23% improvement 

Parallel search evaluates 490 points and converges in 20 steps 
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Compiling New Code Variants at Runtime 
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Code Generation Tools 
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Online Code Generation Results 

 Two platforms 

 umd-cluster (64 nodes, Intel Xeon dual-core nodes) – 

myrinet interconnect 

 Carver (1120 compute nodes, Intel Nehalem. two quad 

core processors) – infiniband interconnect 

 Code servers 

 UMD-cluster – local idle machines 

 Carver – outsourced to a machine at umd 

 Codes 

 Poisson Solver 

 PMLB Parallel Multi-block Lattice Boltzman 

 SMG2000 
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PMLB (Carver and Hopper Results) 

 Online harmonized code runs 

on 512 and 1024 cores 

 On average, 1.12 times faster 

 Best net speedup: 1.46 

 

 Post harmony 

 On average, 1.32 times faster 
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Cross Cutting Issue: When/What To Optimize 

 Example, a dense matrix multiply kernel 

 Various Options: 

 Original program: 30.1 sec 

 Hand Tuned (by developer): 11.4 sec 

 Auto-tuned of hand-tuned: 15.9 sec 

 Auto-tuned original program: 8.5 sec 

 What Happened? 

 Hand tuning prevented analysis  

 Auto-tuned transformations were then not possible 
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Uncoordinated Auto Tuning is a Problem 

 Need auto-tuning at many levels 

 Application 

 Runtime 

 Compiler 

 Separate auto-tuners are a problem 

 Who is driving at any given time? 

 Which change really mattered? 
Who drives all the auto-tuning? 

 Need coordinated auto-tuning at multiple levels 

 First order: crossing guard 

 Allow only one type of auto-tuning to proceed at a time 

 Second order: conductor 

 Coordinates simultaneous optimization of multiple levels 

Crossing guards provide serialization Conductors coordinate parallel auto-tuners 
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Why Getting Tools To Users Is Hard 

 Distributed, University & Lab based Groups 

 Multiple Sites 

 Changes in staffing 

 Balance Research vs. Production Code 

 Need to keep pushing the envelop 

 User feedback is source of many new ideas 

 Testing 

 Code always changing 

 Environment keeps changing  

 Hardware,  

 System Software: OS, Compilers 

 3rd party tools 

 Regular testing as scale is hard 

 “I need 100k cores every night at 3:00 AM” 
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It Takes a Village! 
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• Total of 82 people have committed code 
• One person was not born on first commit 
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The Code Base 
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Code Always Seems to Get Bigger 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

v4.0 v4.1 v4.2.1 v5.0 v5.1 v5.2 v6.1 v7.0.1

S
iz

e
 (

k
B

) 

Runtime Library Size (w/Dependents) vs Annual Release 

Debug Info

Text+Data

19 



20 

Testing 

 Paradyn Testing 

 Required hands on developer 

 Ad-hoc collection of programs to try out 

 Dyninst Testing 

 Daily automated unit testing  

 75 test cases (5 tests with sub-parts) & 9 platforms (processor/OS) 

 10 other factors (compiler, optimization, pic, rewriter, threading, …) 

 Results stored in a DB & posted on web (up to 90,000 tests/day) 

 Developers should run test cases before commit 

 *API Testing 

 Daily automated unit testing (additional 69 tests) 

 Test more than just correctness 

 Memory size of mutator 

 Runtime of test cases 

 Moving to Testing before commit completes 
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Closing Thoughts 

 Execution Time Productivity Requires 

 Deep Understanding of the machine 

 Hiding the data until it is needed 

 Execution Time Productivity Tools require 

 Access all the information in the machine 

 Long term commitment 

 Ability to regularly test at scale 

 Tools require time to mature 

 Must balance steady evolution vs. revolution 


