Crosscutting Topics

Jeffrey K. Hollingsworth

University of Maryland
hollings@cs.umd.edu

UNIVERSITY OF

& MARYLAND

Dyn

1 inst

mailto:hollings@cs.umd.edu

Cross Cutting Themes

= Getting the information we need
= Hiding & Exposing Information
= Effectively Acting on the Information
= By tools (auto-tuners)
= By developers
= By application teams
= Making sure the tools work
= Meet the users needs
= Run at scale

Dyn

2 inst

My Career in Tools

IPS-2 (End-to-end Performance Tool)
= Trace-based, post-morterm processing of data
= Assembly level instrumentation
= GUI to make things “easy”
Paradyn (End-to-end Performance Tool)
= Using Dynamic Instrumentation for low overhead
= Performance Consultant to automate finding bugs
= GUI to make things “easy”
Dyninst (API for tool builders)
= Use Dynamic Instrumentation of Paradyn
= Make it a component
*API (Componentized APIs)
= Split useful components out of Dynisnt
Active Harmony (Auto tuning tools)
= Online automatic code generation based on measurements
yn
3 Inst

One Approach to Getting the Data

Application & System Adaptivity

Interactive
- o3 e .
Application ci‘ c Visualization
. . o O ¢ .
Libraries gi 2 O Techniques
Prg. Model Ei % % = S
P ata Analysis
Msg. PGAS DSL = Data % Y
= = O : c & Reporting
0S/Comm. 2i S o Analysis S Tools
MPI Thrds. Tasks éi 35 Techniques S
Hardware e Dynamic
S5 o Adaptation &
CPU NUMA Netw. < © aptation
A Tuning Tools

Adapting Tools & Applications

Courtesy Martin Schulz, LLNL — Piper Project yn
4 Inst

Hiding and Exposing Information

= Goal: Hide everything that is not needed

= The hard part: What is needed? (and when)?

= Layers of abstractions
= Start with programmers abstracts
= Pull back layers as needed
= Stop when get to transistors

Dyn

5 inst

Issues In Getting the Data

= Can you collect it?
= Hardware events
= OS “help” actions
= |s it available to the tools
= Permissions
= All that other Stuff
= Storing it
= Moving

= Sorting through it
Dyn

6 inst

Acting On The Data: Auto tuning

= Goal: Maximize achieved performance

= Problems:
= Large number of parameters to tune

= Shape of objective function unknown
= Multiple libraries and coupled applications
= Analytical model may not be available

= Requirements:
= Runtime tuning for long running programs
= Don’t try too many configurations
= Avoid gradients

Dyn

7 inst

Active Harmony

= Runtime performance optimization
= (Can also support training runs

= Automatic library selection (code)
= Monitor library performance
= Switch library if necessary

= Automatic performance tuning (parameter)
= Monitor system performance
= Adjust runtime parameters

= Hooks for Compiler Frameworks
= Working to integrate USC/ISI Chill
= Looking at others too

Dyn

8 inst

SMG2000 Optimization

Outlined Code
for (si = 0; si < stencil_size; si++)
for (kk = 0; kk < hypre__mz; kk++)
for (j = 0; jj < hypre__my; jj++)
for (il = 0; il < hypre___mx; ii++)
rp[((ri+i)+(jj*hypre__ sy3))+(kk*hypre sz3)] -=

((Ap_O[((i+(j*hypre__sy1))+ (kk*hypre__sz1))+
(((A->data_indices)[i][si])])*
(xp_O[((+(1*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHILL Transformation Recipe Constraints on Search

permute([2,3,1,4]) 0<TIl, TJ, TK=122

tile(0,4,TI) 0<Ul<16

tile(0,3,TJ) 0=<US=<10

tile(0,3,TK) compilers € {gcc, icc}

unroll(0,6,US)

unrol(0,7,uny ~ Search space: D
1223x16x10x2 = 581M points n

9 inst

1.5

1.4

1.3

1.2

Time (seconds)

0.8

SMG2000 Search and Results

Parallel search evaluates 490 points and converges in 20 steps

FParallel Rank Ordering Algorithm - Search Evelution

0.7

Selected parameters:

TI=122,TJ=106,TK=56,Ul=8,US=3,Comp=gcc
Performance gain on residual computation:

2.37X

Performance gain on full app:

27.23% improvement

.

I

|

- . s

1
4 5] 8

| |
10 12 14
Search Steps

10

1 I
16 18

20

Dyn

inst

Compiling New Code Variants at Runtime

PM,, PM.'" PMy Search Steps (SSL

Harmony Timeline

Active Harmony
Outlined ' _
oo | Code Transforrlnatlon Parameters |

/ Code Generation Tools \

I
i i

\ ! -
compile | | compile compile

READY Signal

>
Applicaton = @ [N @ Ow 00 Appllcap pn
15.S0 ,S.50 vps.s0 — FExecution timeline
1 L M >
‘ stall_phase ‘ ‘
Performance PM,

Measurements (PM) PM, M Dyn
N inst

Online Code Generation Results

= Two platforms

= umd-cluster (64 nodes, Intel Xeon dual-core nodes) —
myrinet interconnect

= Carver (1120 compute nodes, Intel Nehalem. two quad
core processors) — infiniband interconnect

= Code servers
= UMD-cluster — local idle machines
= Carver — outsourced to a machine at umd

= Codes
= Poisson Solver
= PMLB Parallel Multi-block Lattice Boltzman
= SMG2000

Dyn

12 inslf

PMLB (Carver and Hopper Results)

PMLB Application (512 corss, Carver)

L

840 768 896 1024 1182 1280
95) (16¢) (238) "8y (651]
Problem=domain (cubed)

= Online harmonized code runs
on 512 and 1024 cores

= Onaverage, 1.12 times faster
= Best net speedup: 1.46

= Post harmony

= On average, 1.32 times faster
13

A5

PMLB Application (512 cores, Hopper)

Blpost-harmony
[Inet speedup |

|

840 7
(95)

88 1024 1152 1280
(178) (883 (846)

a)

Problem-domain (cubed)

PMLE Application (1024 cores, Hopper)

Net speedup: 1.21

f.bos!-?wvrnoj

| Inet speedup

%8 13 143

Problom-dbmain (cubad)

)

Inst

Cross Cutting Issue: When/What To Optimize

= Example, a dense matrix multiply kernel

= Various Options:
= Original program: 30.1 sec
= Hand Tuned (by developer): 11.4 sec
= Auto-tuned of hand-tuned: 15.9 sec
= Auto-tuned original program: 8.5 sec

= What Happened?

= Hand tuning prevented analysis
= Auto-tuned transformations were then not possible

Dyn

14 inst

Uncoordinated Auto Tuning is a Problem

= Need auto-tuning at many levels

= Application
= Runtime
= Compiler

= Separate auto-tuners are a problem
= Who is driving at any given time?
= Which change really mattered?

Who drives all the auto-tuning?

= Need coordinated auto-tuning at multiple levels
= First order: crossing guard
= Allow only one type of auto-tuning to proceed at a time

= Second order: conductor
= Coordinates simultaneous optimization of multiple levels

Dyn

inst

Crossing guards provide serialization Conductors coordinate parallel auto-tuners

Why Getting Tools To Users Is Hard

= Distributed, University & Lab based Groups
= Multiple Sites
= Changes in staffing

= Balance Research vs. Production Code
= Need to keep pushing the envelop
= User feedback is source of many new ideas

= Testing

= Code always changing

= Environment keeps changing
= Hardware,
= System Software: OS, Compilers
= 3 party tools

= Regular testing as scale is hard D n
= “| need 100k cores everygight at 3:00 AM” inst

It Takes a Village!

1994 1995 1997 1998 1999 2000 2001 2003 2004 2005 2006 2008 2009 2010 2011 2013 2014

1993

U=
o5

O=C—~/ COLN O OIMC >G>
e s
maama.ncm.

gracs

QD

o3
%

ST

SUeme—e yuge!
nnmmmmXMMGECI

=—C=520

=

ZLOD) =

Total of 82 people have committed code

L/

One person was not born on first commit

[] []
e
S ueaSGﬂmnmcmnom SH=CSR=cS

Cooasss 3£ T O 52500EYaNGS
=D ° o @© mwKaWXW“. mm
Q @ O o

300000

275000

250000

225000

200000

175000

150000

Physical SLOC

125000

100000

75000

50000

25000

0

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

The Code Base

Source Lines of Code (SLOC) vs Time

18

m symlite
melf
dwarf
m patchAPI
dynC_API
u dataflowAPI
H parseAPI
msymEval
m proccontrol
m depGraphAPI
mDDG
m stackwalk
minstructionAPI
| dynutil
symtabAPI
mdyner
dyninstAPI_RT
m dyninstAPI

Ecommon

Dyn

inst

Code Always Seems to Get Bigger

Runtime Library Size (w/Dependents) vs Annual Release
80,000

70,000

60,000

50,000

40,000

30,000
20,000
M
v4.0 v4.1l v5.1 v5.2 v6.1

v4.2.1 v5.0

m Debug Info

Size (kB)

m Text+Data

v7.0.1

Dyn

19 inst

esting

= Paradyn Testing
= Required hands on developer
= Ad-hoc collection of programs to try out

= Dyninst Testing
= Daily automated unit testing
= 75 test cases (5 tests with sub-parts) & 9 platforms (processor/OS)
= 10 other factors (compiler, optimization, pic, rewriter, threading, ...)
= Results stored in a DB & posted on web (up to 90,000 tests/day)

= Developers should run test cases before commit

= *API Testing
= Daily automated unit testing (additional 69 tests)
= Test more than just correctness

= Memory size of mutator
= Runtime of test cases

= Moving to Testing before commit completes Dyn
20 Inst

Closing Thoughts

= Execution Time Productivity Requires
= Deep Understanding of the machine
= Hiding the data until it is needed

= Execution Time Productivity Tools require
= Access all the information in the machine
= Long term commitment
= Ability to regularly test at scale

= Tools require time to mature
= Must balance steady evolution vs. revolution

Dyn

21 inst

