
1

Crosscutting Topics

Jeffrey K. Hollingsworth

University of Maryland
hollings@cs.umd.edu

mailto:hollings@cs.umd.edu

2

Cross Cutting Themes

 Getting the information we need

 Hiding & Exposing Information

 Effectively Acting on the Information

 By tools (auto-tuners)

 By developers

 By application teams

 Making sure the tools work

 Meet the users needs

 Run at scale

3

My Career in Tools

 IPS-2 (End-to-end Performance Tool)

 Trace-based, post-morterm processing of data

 Assembly level instrumentation

 GUI to make things “easy”

 Paradyn (End-to-end Performance Tool)

 Using Dynamic Instrumentation for low overhead

 Performance Consultant to automate finding bugs

 GUI to make things “easy”

 Dyninst (API for tool builders)
 Use Dynamic Instrumentation of Paradyn

 Make it a component

 *API (Componentized APIs)
 Split useful components out of Dynisnt

 Active Harmony (Auto tuning tools)
 Online automatic code generation based on measurements

4

One Approach to Getting the Data

Courtesy Martin Schulz, LLNL – Piper Project

Q
u

er
y

A
P

I

Application

Hardware

CPU NUMA Netw.

OS/Comm.

MPI Thrds. Tasks

Prg. Model

Msg. PGAS DSL

Libraries

A
d

at
iv

e
In

st
ru

m
en

ta
ti

o
n

St
ac

k-
w

id
e

D
at

a
C

o
lle

ct
io

n
 &

Se

m
an

ti
c

C
o

rr
el

at
io

n

Online
Data

Analysis
Techniques

Application & System Adaptivity

Adapting Tools & Applications

Interactive
Visualization
Techniques

Data Analysis
& Reporting

Tools

Dynamic
Adaptation &
Tuning Tools

Dist.
Data
Store

5

Hiding and Exposing Information

 Goal: Hide everything that is not needed

 The hard part: What is needed? (and when)?

 Layers of abstractions

 Start with programmers abstracts

 Pull back layers as needed

 Stop when get to transistors

6

Issues In Getting the Data

 Can you collect it?

 Hardware events

 OS “help” actions

 Is it available to the tools

 Permissions

 All that other Stuff

 Storing it

 Moving

 Sorting through it

7

Acting On The Data: Auto tuning

 Goal: Maximize achieved performance

 Problems:

 Large number of parameters to tune

 Shape of objective function unknown

 Multiple libraries and coupled applications

 Analytical model may not be available

 Requirements:

 Runtime tuning for long running programs

 Don’t try too many configurations

 Avoid gradients

8

Active Harmony

 Runtime performance optimization

 Can also support training runs

 Automatic library selection (code)

 Monitor library performance

 Switch library if necessary

 Automatic performance tuning (parameter)

 Monitor system performance

 Adjust runtime parameters

 Hooks for Compiler Frameworks

 Working to integrate USC/ISI Chill

 Looking at others too

9

Outlined Code

for (si = 0; si < stencil_size; si++)

 for (kk = 0; kk < hypre__mz; kk++)

 for (jj = 0; jj < hypre__my; jj++)

 for (ii = 0; ii < hypre__mx; ii++)

 rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=

 ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+

 (((A->data_indices)[i])[si])])*

 (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHiLL Transformation Recipe

permute([2,3,1,4])

tile(0,4,TI)

tile(0,3,TJ)

tile(0,3,TK)

unroll(0,6,US)

unroll(0,7,UI)

Constraints on Search

0 ≤ TI , TJ, TK ≤ 122

0 ≤ UI ≤ 16

0 ≤ US ≤ 10

compilers ∈ {gcc, icc}

SMG2000 Optimization

Search space:
1223x16x10x2 = 581M points

10

SMG2000 Search and Results

Selected parameters:
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc

Performance gain on residual computation:

2.37X

Performance gain on full app:

27.23% improvement

Parallel search evaluates 490 points and converges in 20 steps

11

Compiling New Code Variants at Runtime

Outlined

code-section

Code Generation Tools

Code Server

v1s v2s vNs

compile

r

compile

r

compile

r

v1s.so

Active Harmony

v2s.so
vNs.so

Performance

Measurements (PM)

stall_phase

READY Signal

Code Transformation Parameters

PM1

PM2 PMN

Application

Execution timeline

SS1 SS2 SSN

PM1, PM2, … PMN Search Steps (SS)

Application

Harmony Timeline

12

Online Code Generation Results

 Two platforms

 umd-cluster (64 nodes, Intel Xeon dual-core nodes) –

myrinet interconnect

 Carver (1120 compute nodes, Intel Nehalem. two quad

core processors) – infiniband interconnect

 Code servers

 UMD-cluster – local idle machines

 Carver – outsourced to a machine at umd

 Codes

 Poisson Solver

 PMLB Parallel Multi-block Lattice Boltzman

 SMG2000

12

13

PMLB (Carver and Hopper Results)

 Online harmonized code runs

on 512 and 1024 cores

 On average, 1.12 times faster

 Best net speedup: 1.46

 Post harmony

 On average, 1.32 times faster

13

Net speedup: 1.21

14

Cross Cutting Issue: When/What To Optimize

 Example, a dense matrix multiply kernel

 Various Options:

 Original program: 30.1 sec

 Hand Tuned (by developer): 11.4 sec

 Auto-tuned of hand-tuned: 15.9 sec

 Auto-tuned original program: 8.5 sec

 What Happened?

 Hand tuning prevented analysis

 Auto-tuned transformations were then not possible

15

Uncoordinated Auto Tuning is a Problem

 Need auto-tuning at many levels

 Application

 Runtime

 Compiler

 Separate auto-tuners are a problem

 Who is driving at any given time?

 Which change really mattered?
Who drives all the auto-tuning?

 Need coordinated auto-tuning at multiple levels

 First order: crossing guard

 Allow only one type of auto-tuning to proceed at a time

 Second order: conductor

 Coordinates simultaneous optimization of multiple levels

Crossing guards provide serialization Conductors coordinate parallel auto-tuners

16

Why Getting Tools To Users Is Hard

 Distributed, University & Lab based Groups

 Multiple Sites

 Changes in staffing

 Balance Research vs. Production Code

 Need to keep pushing the envelop

 User feedback is source of many new ideas

 Testing

 Code always changing

 Environment keeps changing

 Hardware,

 System Software: OS, Compilers

 3rd party tools

 Regular testing as scale is hard

 “I need 100k cores every night at 3:00 AM”

17

It Takes a Village!

1993 1994 1995 1997 1998 1999 2000 2001 2003 2004 2005 2006 2008 2009 2010 2011 2013 2014

hollings
jcargill
markc

newhall
karavan

rbi
krisna

tamches
mirg
naim

zhichen
lzheng

sec
buck

hseom
tung

ssuen
czhang

wylie
nash

mcheyney
pcroth

csserra
zandy

cain
davisj
bernat

nick
schendel

chambrea
altinel
mihai

tikir
jasonxie

willb
gurari

wxd
shergali

ning
chadd
beyerj

gaburici
darnold

jaw
cortes
tlmiller
rchen

mjbrim
mikem
jodom

igor
eli

lharris
legendre

gquinn
pack
rutar

bpellin
nater

cooksey
tugrul

giri
bill

roundy
mlam

carl
lam

madhavi
jolly

qium
taf

mcnulty
jacobson

kumar
daeschli
wenbin
xmeng
welton
jistone

zuyu
samanas

wcohen

• Total of 82 people have committed code
• One person was not born on first commit

18

The Code Base

18

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

P
h
ys

ic
a
l
S

L
O

C

Source Lines of Code (SLOC) vs Time

symlite

elf

dwarf

patchAPI

dynC_API

dataflowAPI

parseAPI

symEval

proccontrol

depGraphAPI

DDG

stackwalk

instructionAPI

dynutil

symtabAPI

dyner

dyninstAPI_RT

dyninstAPI

common

19

Code Always Seems to Get Bigger

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

v4.0 v4.1 v4.2.1 v5.0 v5.1 v5.2 v6.1 v7.0.1

S
iz

e
 (

k
B

)

Runtime Library Size (w/Dependents) vs Annual Release

Debug Info

Text+Data

19

20

Testing

 Paradyn Testing

 Required hands on developer

 Ad-hoc collection of programs to try out

 Dyninst Testing

 Daily automated unit testing

 75 test cases (5 tests with sub-parts) & 9 platforms (processor/OS)

 10 other factors (compiler, optimization, pic, rewriter, threading, …)

 Results stored in a DB & posted on web (up to 90,000 tests/day)

 Developers should run test cases before commit

 *API Testing

 Daily automated unit testing (additional 69 tests)

 Test more than just correctness

 Memory size of mutator

 Runtime of test cases

 Moving to Testing before commit completes

21

Closing Thoughts

 Execution Time Productivity Requires

 Deep Understanding of the machine

 Hiding the data until it is needed

 Execution Time Productivity Tools require

 Access all the information in the machine

 Long term commitment

 Ability to regularly test at scale

 Tools require time to mature

 Must balance steady evolution vs. revolution

