Resilient Personnel Surveillance & Threat Detection using Fused, Layered, Orthogonal Systems

Carey Rappaport
Northeastern University
Boston, MA

DHS Summit, March 2010
Outline

- Threat detection regimes
- Research thrust division
- Distant & Mid-range detection approaches
- Intimately near imaging
Detection Regimes

- **Distant targets (10 m to >100 m),**
 - Stand-off detection of hazards
 - Far enough away to minimize threat

- **Mid-range targets (3 to 10m),**
 - Enhanced sensing discrimination
 - Not explicitly surrounding target

- **Intimately near targets (< 3 m),**
 - Non-invasively examined
 - Mostly portal sensors
Sensing Thrust Relates to Other Thrusts

Coordination both across discipline and among thrusts is essential.
Detecting and Identifying Explosives

- Sense within hidden / concealed / shielded / non-stationary environments
- Imaging to detect suspicious shapes (video, X-ray)
- Wave-based imaging to detect suspicious shapes (THz, mm-wave radar, acoustics...NMR, video, X-ray)
- Chemical detection to identify suspicious materials (Mass Spec., Ion Mobility Spec., Gas Chrom., “Artificial Dog Nose”)
- Material spectral response to characterize molecular structure (Hyperspectral, IR, UV, THz, NQR, LIBS)
- Device electronic response to identify wireless electronic triggers (EM emission sensing)
Standoff Explosives Detection

- Detect (not distinguish, not identify) potential explosive threats
 - Safely (eye safe, no ionizing radiation)
 - At standoff distance (>50m)
 - Under clothing
 - Without trace chemicals on clothing
 - Detect shape rather than composition

- Reasonable sensor array
 - Not too big
 - Not too expensive
Overall Suicide Bomber Detection Strategy

- Track individuals: identify suspicious movement (Video)
- Detect anomalies under clothing at distance (Radar)
- Image object under clothing at medium distance (X-Ray)
- Analyze chemical characteristics at medium distance (THz)
Basic Standoff Detection Geometry

Layered detection within a single package:
- Intelligent Video
- mm-wave Radar
- X-Ray Backscatter
- THz Spectroscopy

Video 100m
Radar 50m
X-Ray 10m
THz 10m
ZBV
Pedestrian Paths
Combined Layered Standoff Surveillance: AS&E Z-Backscatter Van Platform

- Side View
- Top View

- X-ray Beam
- Terahertz Beam
- Radar Beam
- PTZ Cameras
Intelligent Video: Siemens Corp. Research

SCR Technology: Automatically Detect and Track Individuals
Millimeter Wave Radar Detection

- 50m range
- High resolution at 3 - 4mm wavelength
- Single human illumination
- Ave. width of person: 0.5m
- Beamwidth: 0.4 deg.
- Detect people / distinguish hazards through clothes

MMW Radar

4.3 cm

17 cm
AS&E X-Ray Backscatter Detection

Chopper Wheel for Generating X-Ray Fan Beam

X-Ray Backscatter image Showing Organic / Inorganic Objects

http://www.as-e.com/products_solutions/z_backscatter_transmission.asp
THz Spectroscopy

- Frequency range: 500 GHz - 3 THz
- THz waves penetrate most clothing
- Strong spectral discrimination of materials
- Considerable attenuation in air
- Portable source/detectors available
Explosive THz Absorption Spectra-- RPI

- **HMX**
 - Frequency (THz): 0.5, 0.8, 1.2, 1.6, 2.0, 2.4
 - Absorption Coefficient (α) in cm$^{-1}$: 0, 60, 120, 180, 240
 - Peaks: 1.8 THz

- **RDX**
 - Frequency (THz): 0.5, 0.8, 1.2, 1.6, 2.0, 2.4
 - Absorption Coefficient (α) in cm$^{-1}$: 0, 60, 120, 180, 240
 - Peaks: 0.82 THz, 1.5 THz, 1.96 THz

- **PETN**
 - Frequency (THz): 0.5, 0.8, 1.2, 1.6, 2.0, 2.4
 - Absorption Coefficient (α) in cm$^{-1}$: 0, 60, 120, 180, 240
 - Peak: 2.0 THz

- **TNT**
 - Frequency (THz): 0.5, 0.8, 1.2, 1.6, 2.0, 2.4
 - Absorption Coefficient (α) in cm$^{-1}$: 0, 60, 120, 180, 240
 - Peak: 2.2 THz
Non-Explosives Absorption Spectra: Distinct from Explosives Spectra

- Sugar
- Detergent
- L-Leucine
- Dimethoate
THz Absorption in Air

![Graph showing FASCODE Atmospheric Absorption with different conditions and frequency (THz)]
Intimately Near Detection: Advanced Imaging Technologies (AIT) for Whole Body Imaging

- **NEU Testbed**: Unbiased academic-oriented testbed for development and evaluation of multi-modal sensors and algorithms for whole body imaging
 - Enable experimentation with new sensing modalities
 - Optimize sensor configurations
 - Optimize scanning modes
 - Explore new algorithm concepts
 - Model based vs. Fourier inversion
 - High resolution fused imaging
 - Automated anomaly detection
 - Develop approaches to information fusion and adaptive multisensor processing
Current State-of-the-Practice Example: L3 ProVision mm-Wave Imager

- TSA qualified Advanced Imaging Technology (AIT) system
- Detects many types of materials based on shape (metallic and non-metallic): liquids, gels, plastics, metals, ceramics
- Uses two linear antenna arrays, scans through 240 degrees
- Limitations
 - “Dead Spots”
 - No spectroscopic info
 - Limited views
 - Poor penetration through leather and metallic clothing
 - No penetration through skin or into body cavities
Whole Body Imaging Sensors with Multimodal Fusion Potential

- **Mm-Wave**
 - Penetrates clothing
 - Distinguishes body-worn objects other than flesh (i.e. metal, explosives, water, plastic)
 - Active system provides target contour info

- **THz**
 - Spectroscopic responses for explosives characterization
 - Penetrates thin clothing

- **X-ray Backscatter**
 - Penetrates all concealing layers
 - Dual energy distinguishes foreign materials
 - Ionizing radiation but very low dosage

- **IR Thermography**
 - Shows unusual heat patterns on body

- **NQR**
 - Non-localizing, but unique explosive discrimination
 - Penetrates throughout body
Whole Body Imaging Testbed at NEU

- Precision portal multi-axis sensor array positioning system
 - Designed to accommodate various types of sensors
 - Separately, for analysis
 - Together, to test fused sensor information
 - Built to be flexible for reconfiguration

- Provide access to raw measurement data
 - Allows specific, modality-based inversion
 - Allows joint modality reconstruction

- Ultimate Goals
 - Establish performance metrics for sensor modalities
 - Develop and evaluate novel inversion and multi-modal threat detection algorithms
Multimodal Sensor Summary

Multiple modalities considered separately and in combination

- No single sensor can detect every threat
- Layer sensing modalities to build detection confidence and confirm threats
- Examine how multiple orthogonal sensors can work simultaneously
- Establish performance metrics and conduct feasibility analysis
- Investigate more-than-additive fused sensing advantages