A Risk & Vulnerability Assessment Methodology for Food Systems

Ryan Newkirk, MPH
National Center for Food Protection & Defense
Preview

- Context & background
- Systemic risk/vulnerability assessment methodology
- Model results
Risk

Feasible, detrimental outcome of an activity or action

Characterized by:

Severity: magnitude of possible adverse consequences

Probability: likelihood of occurrence of consequence
Background

- **Food System**
 - Inputs, outputs, and processes occurring along the production-to-consumption continuum of one or more foods
Background

- DHS identified food protection & defense among its top priorities
 - Continuing threat of intentional contamination
 - Recent, high-profile foodborne disease outbreaks
 - *Salmonella typhimurium* & peanut butter
 - Melamine & milk
Background

- **Risk assessments**
 - Many are qualitative
 - Common for single location / facility
 - Difficult on dynamic / highly integrated systems
 - No consensus on best methodology
 - Paucity of system-level research
Purpose

- Develop a methodology to assess risk / vulnerability on a food system
- Pilot project
 - MN fluid milk system
Methodology

2 Main Steps

- **Step 1.** Characterize the MN fluid milk system
 - 3 Phases

- **Step 2.** Create model / conduct risk assessment
 - 3 Phases
Step 1. Phase 1. System Characterization

- Main Activities
 - Identify system inputs and outputs
 - Identify system processes
 - Quantify / estimate system variabilities & uncertainties
Step 1. Phase 1. System Characterization

- **System Diagram**
 - Collate and synthesize all information
 - Trace commodity flow
 - Can include specs
 - Capacities
 - Rates
 - Regulations
Minnesota Fluid Milk Flow Diagram

1. **Start**
 - Milk transferred from cow to holding tank

2. **Store Milk: Farm**
 - Farm
 - Milk ready for pick up
 - Driver checks appearance, smell and takes physical sample to processor
 - 48 hour turn over common
 - Range: 1 – 72 hours
 - On farm tank size: 100 – 6,000 gallons

3. **Sample Taken**
 - Rejected load
 - Land Spread or Manure Pit

4. **Tanker Truck Hauls Milk**
 - Milk ready for processing
 - Most pick up from 1 – 10 farms
 - 30,000 – 50,000 lbs/truck
 - 3 – 24 hr travel time

5. **Sample Tested**
 - Reject load
 - Milk Stored in Pool Plant
 - Not all districts use Pooling Plants
 - Assumption: Silo size range: 20,000 – 60,000 gallons

6. **Store Milk: Plant Receiving Silo**
 - Milk ready for plant use
 - Silo # of which truck unloaded to is recorded
 - Must be processed within 72 hours, most used within 24 hours
 - Cleaned after each use
 - 2 – 6 Tanks/Plant
 - 30,000 – 60,000 gallons each

7. **Transfer to Balance Tank**
 - Milk ready for plant use

8. **Separate Milk**
 - Milk fat separated
 - Byproducts created
 - Process or Ship Byproducts (Creams)
 - Cream can be re-added

9. **Add Ingredients**
 - Ingredients added

10. **Pasteurization**
 - If needed
 - Surge Tank

11. **Homogenize milk**
 - Milk ready for holding

12. **Quality Assurance Samples**
 - Milk stored in Output Silo
 - Milk ready for bottling
 - Milk stored in Output Silo
 - Stored for 1 – 24 hrs in 3 – 11 silos
 - Assumption: Silos hold 10,000 gallons

13. **Package / Bottle Milk**
 - Package / Bottle Milk

14. **Filler Bowl: Bottling Machine**
 - Filler Bowl: Bottling Machine

15. **Store Finished Product**
 - Product complete
 - Store Finished Product

16. **Ship Product**
 - Milk reaches destination in 3 – 24 hrs

17. **End**
 - Product complete

1. **Samples checked for:**
 - Butterfat, Bacteria Count, Inhibitor Test, Sediment Test, Freezing Point

2. **Samples checked for:**
 - Bacteria Count, Cleaning Agent Residue, Fat Content
Step 1. Phase 2. Parameter Identification

- Model parameter identification / specification
 - 2 categories
 - System characterization parameters / Parameter archetypes
 - Modular parameters
Step 1. Phase 2. Parameter Identification

- System characterization parameters
 - Based on system characterization diagram / data
 - Key system nodes
 - Parameter Archetypes
 - Essential
 - Broadly-aggregated categories
 - Included in majority food systems
Step 1. Phase 2. Parameter Identification

- Farm / production site
- Transportation
- Processing
- Distribution
- Consumption
- Agent characteristics
- Event detection
Systemic Relationships among Archetypes

Economics

Farm → Processing → Distribution → Consumption

Agent → Detection
Step 1. Phase 2. Parameter Identification

- Modular Parameters
 - Threat module
 - Probability of attack
 - Vulnerability module
 - Probability of success given an attack
 - Detection and/or destruction of contaminants
 - Can utilize expert solicitation
Step 1. Phase 2. Parameter Identification

- Modular Parameters
 - Consequence module
 - Estimation of social and economic effects
 - Population susceptibility to contaminant
 - Recall logistics
 - Product loss
Step 1. Phase 3. Scenario Development

- Select agent / contaminant
 - Botulinum toxin
- Select location of contamination
- Assumptions
 - Can be directly tied to threat and vulnerability analyses
 - Can utilize expert solicitation
Step 2. Model Creation / Risk Assessment

- 3 Phases
 - Deterministic
 - Ideal for use in well characterized and controlled systems
 - Probabilistic
 - Incorporates variability and uncertainty in systems
 - Simulation
 - Multiple model runs
Step 2. Phase 1. Model Creation / Risk Assessment

- **Deterministic Phase**
 - Ideal for well characterized and controlled systems
 - Farm-to-table system-based milk flow patterns
 - Contamination concentration followed through system to consumer
 - Intentional contamination modeled at different locations / times
Step 2. Phase 1. Model Creation / Risk Assessment

- Key points / nodes are linked
 - Inter-worksheet connections
 - Different worksheet for each node
 - All calculations linked
 - Intra-worksheet parameters
 - Inputs, outputs, volumes, cleaning cycles, etc.
- Morbidity, mortality, and economic outputs
- Identifies candidate model parameters for probabilistic phase
Step 2. Phase 2. Model Creation / Risk Assessment

- Probabilistic Phase
 - Identifies / assesses risks in complex systems to improve safety and performance
Step 2. Phase 2. Model Creation / Risk Assessment

- **Probabilistic Phase**
 - Based on system characterization & deterministic model phases
 - Use distributions instead of point estimates for values that are
 - Not well characterized
 - Inherently variable
 - Important degree of uncertainty
Step 2. Phase 3. Model Creation / Risk Assessment

- Simulation Phase
 - Monte Carlo methodology
 - Using distributions generated in previous phase
 - Randomly selects inputs from distribution
 - Perform deterministic step
 - Repeat
 - Aggregate results of individual computations into final result
Model Results

- Probability distribution of main outputs
 - Morbidity
 - Mortality
 - Economic costs
- Sensitivity analyses
Application of Results

- Results identify system node(s) that contributes most to risk/vulnerability
 - Insert mitigation strategies
 - Rerun model
 - Assess morbidity/mortality estimates
 - If estimates are reduced, proceed to next system node
 - Repeat as necessary
- End result = systemic risk/vulnerability reduction
Challenges

- Data
- Industry access & cooperation
- Model assumptions
Reducing systemic risk/vulnerability requires a systemic approach

Different system attributes/nodes require different assessment methodologies

Assess risk/vulnerability on a food system

- System characterization
- Model creation / Risk assessment
Questions?