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Motivation:  structural-blast analysis is complex and time-consuming; 
stakeholders and decision makers want more expedient tools

 Detailed analysis requires 
• Wide range of subject matter 

expertise
• Careful materials characterization
• Explosive testing and validation
• High fidelity simulation

A detailed understanding of 
theory, modeling and testing 
can be leveraged to develop 
fast-running tools

Hera Linux Cluster 
127.2 TF - AMD; 
13,824 processors

High Explosive Application Facility

Non-destructive Evaluation

ALE3D Hydrocode
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 Two-part methodology:
1. Reduced dimensionality in physical 

models
2. Tabulated results from fully-coupled 

3D analyses (“lookup table”)

 Two-part methodology addresses
• Multiple scenarios 
• Uncertainty/variability over large 

number of variables

 Combined onto a single architecture

Fast running model two-part methodology: 
Tools built from statistical emulation and simplified physics
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Speed via reduced dimensionality:  fast running tunnel model

 The code employs a simpler algorithm that captures the 
essential physics and can be run on a single-processor PC

 Tool is a 1-3/4D ALE hydrocode – spherical flow region 
coupled to axial flow in tunnel 
• accounts for wall drag and radiative and convective heat 

transfer
 Arbitrary boundary conditions allowed at tunnel entrance 

and exit
• Rigid barrier
• Flow-through
• Choked flow

Lawrence Livermore National Laboratory

 

 

Reduced Order

1D Equations of Motion
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Fast-run comparison with 
3-D Hydrocode Calculation and Experiment

Fast-run tunnel modeling results
• requires several orders of magnitude less CPUs than 
higher-dimension runs (laptop vs cluster)
• compare well w/ higher-D & experimental results

Reduced Order

Lawrence Livermore National Laboratory
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Fast-run reduced dimensionality model is flexible

 Variable cross section with time-dependent radial wall motion
 Allows inclusion of in-line chambers or rooms (expansions 

and constrictions)
 Arbitrary number of doglegs of any angle
 Connected side drifts

Lawrence Livermore National Laboratory

Reduced Order

This particular geometry ran 
in 55 seconds on a single 
processor laptop.
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Fast-run Example 2:
Can add station-train-drift complexity

 500m long tunnel with station expansion (at 220m), 
train contraction (at 290m) and a side drift (at 270m)

Lawrence Livermore National Laboratory

Side Drift

Train blockage (contraction)
Station Expansion

Source Location

Model target points

Reduced Order
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Fast-run Example 2:  
Shock down a 500m long tunnel-station-train system

Lawrence Livermore National Laboratory
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Reduced Order
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Fast-run Example 2:  
Impulse per unit area down a 500m tunnel/station

Lawrence Livermore National Laboratory
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Fast-run Example 2:
Peak pressure along 500m long tunnel/station/train

Lawrence Livermore National Laboratory
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Reduced Order



18
LLNL-PRES-XXXX

Blast Survivability

 Bowen curves relate survival 
probability to maximum 
overpressure, exposure duration 
and body orientation

 Survivability tracked and plotted at 
target points along tunnel

Lawrence Livermore National Laboratory

Reduced Order
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Method 2:
Classifier allows rapid ‘lookup’ of higher fidelity structure failure analysis

 Failure prediction requires:
• Clearly defined response criteria
• Advanced sampling

 Statistical classifier can :
• Intelligently select new points for 

evaluation
• Combine simulation data with expert 

knowledge to predict damage

Method quickly provides risk 
prediction based on 
previous detailed analysis.

Fail
No fail

3D Modeling
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Sample high performance simulations

 3D model mesh of a 
hypothetical tunnel as used in 
a high fidelity hydrocode 
simulation of tunnel failure.

 A breached tunnel example; the 
‘breach’ is defined by a dual criteria 
capturing tensile and compressive 
failure.  Here multiple breaches 
occurred.

Lawrence Livermore National Laboratory

3D Modeling
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Breach criteria from high strain rate concrete tests

 Split Hopkinson 
Pressure Bar (SHPB)

Lawrence Livermore National Laboratory

Impulse from 
below: wave 
propagation 
in long bar

Increasing strain rate

Failure
“faulting” 
cones

Dynamic Strength Increase                       
(DIF)

 Dilation threshold 
0.85%

3D Modeling



22
LLNL-PRES-XXXX

Breach criteria for damage in tension: density drop

Lawrence Livermore National Laboratory

Impulse

 Density Decrease of 5%Dynamic “Brazilian” split cylinder test

3D Modeling
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Breach criteria in action: threshold on shear dilation 0.85%

Breach No Breach

Lawrence Livermore National Laboratory

3D Modeling
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Statistical methodology

 We identify the breach/no 
breach boundary using 
Support Vector Machines 
(SVM).

 An SVM identifies the 
boundary that maximizes the 
margin between two classes.

 The shape of our SVM can 
be constrained based on 
expert knowledge.

Lawrence Livermore National Laboratory

3D Modeling
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Adaptive Sampling

 After we have our 
initial points, we use 
an SVM to identify 
new points to 
evaluate.

 The most informative 
points are those 
located on the 
boundary and far 
from existing points.

Lawrence Livermore National Laboratory

3D Modeling
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Estimated breach boundary curve

 Data with SVMs  Final graphic

Lawrence Livermore National Laboratory

Fail
No fail
Possible fail
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Single GUI platform handles both Methods 1 and 2

3D Modeling
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Summary and Conclusions
 Fast-running tools leveraged from a detailed understanding of theory, 

modeling and testing of blast-structure interaction.
 Such tools predict specific responses quickly and allow for uncertainty 

quantification. 
 Two different approaches considered:

• a reduced dimensionality approach providing theory based-analysis,
• and a statistical approach over large parameter space providing rapid 

lookup of output in presence of uncertainty. 
 Both approaches can be integrated into single unified platform
 In future work, we plan to further refine our parametric classification 

method.
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