Cyber Analytics for US-CERT

Transitioning network flow visualization from the laboratory to the watch floor

Bill Pike
Pacific Northwest National Laboratory
bill.pike@pnl.gov

John Gerth & Justin Talbot
Stanford University
gerth@graphics.stanford.edu
Challenges to anomaly detection and characterization in computer network communications:

- Lots of data (billions of transactions/day)
- Lots of unique actors
 - IPv4: 4.3 million unique IP addresses
 - IPv6: 6.67×10^{27} IP addresses per square meter
- Lots of noise
What can visual analytics do for cyber security?

- If we know what we’re looking for, we can build a signature to detect it. **But what’s in the data that we don’t already know to look for?**

- **Approach:** Create a new ability to scale between “50,000ft” situational awareness and “ground level” analysis of individual transactions.
 - PNNL | NUANCE network flow overviews
 - Stanford | Isis event browsing and correlation

- **Goals:**
 - Deploy a scalable visualization suite at US-CERT to visually discover emerging threats in high-volume streaming data.
 - Link laboratory and academic products into a single suite.
US-CERT Mission

- Protect critical infrastructure in cyberspace – both public and private sector.
 - Analyze and reduce cyber threats and vulnerabilities.
 - Disseminate cyber threat information.
 - Coordinate incident response activities.

- US-CERT’s EINSTEIN program collects summary network traffic information at agency gateways and provides a high level view of federal government network connections.

- US-CERT analysts use EINSTEIN data to correlate cross-agency network events.
One current visualization tool for EINSTEIN flow data

Pros:
- Every analyst has Excel
- Very flexible

Cons:
- Max 65K rows
- Data must be formatted and imported
Our approach
Scalable exploration of network flows

- Collect analyst requirements

- Customize existing tools to support a new level of situational awareness and exploratory analysis
 - **PNNL**: NUANCE Traffic Circle
 Generate high level overviews of large data sets.
 - **Stanford**: Isis
 Construct event narratives and preserve investigation history

- Support analytic workflow
 - Start with NUANCE overviews; when interesting events discovered, send extracts to Isis for detailed analysis.
NUANCE Traffic Circle
Scalable exploration of network flows

- Interactive visualization of patterns in high volume netflow data.
Isis
Using progressive multiples to explore flows

Progressive multiples...
- Make exploration history visible
- Support backtracking
- Allow rows to be reordered, revealing structure and event sequencing
- Compare events of different nodes using time-oriented displays

Traffic involving node A as node-link diagram

Traffic involving A as a timeline
Sample Isis investigation in which the brushing of a data attribute (orange) by analyst reveals need to expand search
After expanding time, analyst finds a single hour on which to focus.
Event plots
Constructing a narrative
Evolution of tools for US-CERT

- Engage analysts in design reviews, requirements analyses.
- Adapt tools to EINSTEIN flow data by making them schema agnostic.
- Allow single tool sessions to visualize multiple tables in order to match existing data workflows.
- Allow timelines and event plots to use any attribute for an axis, not just network addresses.
- Simplify query panel inputs to improve productivity.
- Support analyst-defined calculations and control over panel contents.
For researchers:
- Understanding real-world workflows
- Resources to turn tools into re-deployable production systems

For practitioners:
- Visual analytics becomes part of daily workflow
- New ways of viewing data lead to better situational awareness
- Quicker response time between alert and resolution

Next steps:
- Link visualization to modeling; there’s only so much data you can visualize!
- Understand the characteristic behaviors of machines on a network
- Transition from reactive to proactive security posture