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4% Why video-analytics?
Mo

Inexpensive, easily deployable sensors
= A very large number already deployed in critical locations
= Roaming cameras (vehicles, cell phones) maximize area coverage

Provide standoff detection capabilities:

= Can identify potential threats with enough lead time to allow for
averting/mitigating actions.

Provide contextual coverage, uncovering threats not apparent to
single sensors:

= Coordinated activities by groups, where each individual behaves
“normally”.

Can cue off and coordinate shorter range sensors

= Establish target identity across occlusion

= Coordinate hand-offs across fields of view to guarantee persistent
surveillance.
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Detect contextually “interesting” events




o5 “""x"*!sa.%
Y OW S
T L o=
4k Challenges:
E R
s n
. pre=—— A
y F
“‘Jn.‘.mm'wx*“‘

= Tracking a very large number of targets:
= Occlusion
= Targets with similar appearance ¢ Normal or malicious
= Appearance change

How many targets? Who is who?
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= Assessing intentions:
= Distinguishing contextually normal from threatening.

= Eliminating 99.9% of " clutter” and passing only relevant data to
human operators.

events encoded in 1/100 to less than 1/10° of the data




o5 ““"x"ma.o}
o ry ’{‘G
£y
B B C
Y B
E L .
F——— &
e $
QJ“"-‘fﬁa_; 5 g,x\""“

= Tracking a very large number of targets:
= Occlusion
= Targets with similar appearance ¢ Normal or malicious
= Appearance change

= Assessing intentions:
= Distinguishing contextually normal from threatening.

= Eliminating 99.9% of " clutter” and passing only relevant data to
human operators.

Approach: dynamical models as information
encapsulation/prediction paradigms




4k Background: Dynamical Models

(71-2) (%)

Observed

Linobserved

A mathematical rule describing the time dependence
of a point's position in its ambient space.

Order (rank): number of parameters needed




‘4h Why Dynamical Models?

All the information is encapsulated in the dynamics




4k Dynamical Models in Tracking:

Model target evolution as the

output of an unknown system w
Learn the rule (system id)

Use this rule to “guess”

y(t-1)...y(t-n) y(t)
e |}

Works, but..
Computationally expensive
Can’t handle time variations




4k Dynamical Models in Tracking:

Model target evolution as the

output of an unknown system w
Learn the rule (system id)

Use this rule to “guess”

y(t-l)...y(t-nL’[ ]_> 0}
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Key observation:
We don’t need G, just y !




‘4K Detour: Completing missing information




‘4K Detour: Completing missing information
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Spline Interpolation




‘4K Detour: Completing missing information
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Right Description: maximum
smoothness

"time




‘4K Detour: Completing missing information
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Right Description: don’t add
new rules

"time




‘4K Detour: Completing missing information
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Formally: minimize the rank of
the underlying model

"time




“ Hankel Based Prediction

4’[ J—» y(t)
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‘4k Receding Horizon Rank Minimization Filter
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minimize Trace(W) + T?"(Z
‘ Yk = Yk — Uk

subject to [
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‘4 Robust Receding Horizon Tracking

frame: 1




‘4K Establishing identity across occlusion

Automatically stitched tracklets:

Look for lowest complexity joint model.




) / 2 % .;%5 £ )
‘.;A Fast Event Detection

two parameters: vV,

one parameter: velocity v, one parameter: velocity v,

Key observation: activity changes increase overall model complexity
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‘.;A Fast Event Detection

two parameters: vV,

one parameter: velocity v, one parameter: velocity v,

Look for changes in model complexity |
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two parameters: vV,

one parameter: velocity v, one parameter: velocity v,

Look for changes in the rank of the Hankel matrix |
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‘_;..,k Hankel Rank Based Fast Event Detection

Contextually normal
Contextually abnormal activity

activity




Look for simplest joint models (e.g. low Hankel rank)
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= Dynamic vision complements traditional sensing
modalities:

= Pervasive, passive sensors, millions already deployed
= Potential to detect suspicious events at a distance

= Wide area coverage: can correlate spatio-temporally
distributed events.

= Can assist other sensors by identifying “targets of interest”
= Challenges:

= Robust tracking of large number of targets

= Avoiding data deluge

= Use of the information to uncover threats

We can overcome these challenges through acombination of
computer vision, machine learning and dynamical systems tools
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More information as http://robustsystems.ece.neu.edu




