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1 Motivation

We study the joint problem of detection and identification of a sudden and

unobservable change in the statistical pattern of an information sequence to

one of several alternative patterns. This problem has applications in vari-

ous fields including sensor management, bio-surveillance, threat detection and

identification. We propose a practical online change detection and identifi-

cation strategy that is asymptotically optimal under the fixed-error and the

Bayesian formulations.

Suppose we observe an information sequence, and it is crucial to detect a

change in the threat level as early as possible and identify its cause as accu-

rately as possible. The inferred threat is initially low, but at some unknown

and unobservable time, the threat level jumps suddenly to one of pre-described

categories. To maintain the public safety, it is important to detect this change

as early as possible, and at the same time, assess the nature of the change as

accurately as possible in order to take the most appropriate countermeasures.

This boils down to solving optimally the tradeoff between the detection delay

cost and the false alarm and misdiagnosis costs to the society.

2 Problem description

A system is subject to be failed at some unobservable disorder time θ by

some unknown cause µ.

Cause µ can be any one ofM , {1, 2, ...,M} with P {µ = i} = νi.

Disorder time θ is zero-modified geometric distributed;

P {θ = 0} = p0 P {θ = t|θ > 0} = (1− p)t−1p.

We want to

– detect the disorder time θ as early as possible, and

– identify its cause µ as accurately as possible,

based on a sequence of observations X1, X2, ..., such that

X1, X2, · · · , Xθ−1︸ ︷︷ ︸
w/ density f0(·)

, Xθ, Xθ+1, · · ·︸ ︷︷ ︸
w/ density fµ(·)

conditionally independent given θ and µ.

We want a decision rule (τ, d) that declares at time τ that the disorder has

been triggered by cause d so as to optimize the tradeoff among

– the detection delay loss, E [(τ − θ)+] or E [τ − θ| τ ≥ θ],

– the terminal decision loss:

- the false alarm cost, P {false alarm under (τ, d)},
- the misdiagnosis cost, P {misidentification under (τ, d)}.

We consider two formulations:

– Fixed-error formulation pursues a decision rule (τ, d) that minimizes the

expected delay, E [τ − θ| τ ≥ θ], subject to bounds on false alarm and

misdiagnosis probabilities,

Rji(τ, d) ≤ rji, i ∈M, j ∈M∪ {0}\{i}

where

Rji(τ, d) ,

 P {d = i, τ < θ} , j = 0,

P {d = i, µ = j, θ ≤ τ <∞} , j ∈M\{i}.

– Bayes formulation pursues a decision rule (τ, d) that minimizes a

Bayes risk, a linear combination of the losses described above,

R(c,a)(τ, d) , cE
[
(τ − θ)+] + κ(a)(τ, d),

where

κ(a)(τ, d) ,
∑
i∈M

a0iP {d = i, τ < θ}

+
∑
i∈M

∑
j∈M\{i}

ajiP {µ = j, d = i, θ ≤ τ <∞}

is the terminal decision loss of the Bayes risk associated with every deci-

sion rule (τ, d), for given constants c and a.

3 Need for simple decision rules

- Obtaining an optimal decision rule is computationally infeasible in general.

- Dayanik et al. [2] showed that the Bayesian formulation can be reduced to

an optimal stopping problem. However, unless the number of causes M is

small, the problem cannot be solved due to the so-called “curse of dimen-

sionality”.

- We therefore need a simple decision rule.

3.1 Simple decision rule

Let

Π(0)
n : posterior probability that the change has not happened, and

Π(i)
n : posterior probability that the change has been triggered by cause i,

after observing X1 . . . Xn; namely

Π(0)
n , P {θ > n| Fn} and Π(i)

n , P {θ ≤ n, µ = i| Fn} , i ∈M and n ≥ 0,

where (Fn)n≥0 is the filtration generated by (Xn)n≥0.

We define decision rule (τA, dA) as the following

τA , inf

{
n ≥ 1 : Π(i)

n >
1

1 + Ai
for some i ∈M

}
and dA ∈ arg max

i∈M
Π(i)
τA
.

- Namely, the rule stops when one of the posterior probability processes ex-

ceeds a certain threshold and declares that the disorder has been triggered

by the corresponding cause.

- The implementation of the decision rule is easy: we only need to choose the

values of A.

- We show that by choosing the values of A appropriately, the decision rule

(τA, dA) is asymptotically optimal

– as ‖r‖ , maxi∈M, j∈M∪{0}\{i} rji ↓ 0 in the fixed-error formulation, and

– as c ↓ 0 in the Bayesian formulation.

4 Results

4.1 Asymptotic of each loss as A ↓ 0

In order to choose the values of A for the asymptotic optimalities, it is crucial

to know how the expected delay loss and the terminal decision loss behave

as A ↓ 0. We can in fact obtain their approximations when A is small. Let

Pi and P(t)
i denote, respectively, the conditional probabilities given µ = i and

given µ = i and θ = t. Define

li(j) ,

 q(i, 0)− log(1− p), j = 0

min {q(i, j), q(i, 0)− log(1− p)} , j ∈M\{i}


in terms of the Kullback-Leibler distance

q(i, j) ,

∫
E

log
fi(x)

fj(x)
fi(x)m(dx), i 6= j ∈M∪ {0}

between densities fi and fj.
The approximation of the decision delay loss:

Ei [τA] =
− logAi

minj∈M∪{0}\{i} l(i, j)
+ o(‖A‖) as ‖A‖ ↓ 0.

The asymptotics of κ(a)(τ, d) can be obtained by nonlinear renewal theory

as in Baum and Veeravalli [1].
The approximation of the terminal decision loss:

κ(a)(τA, dA) =
∑
i∈M

νiκi(τA, dA) =
∑
i∈M

(
νiaj∗i iE

[
e−Wi

])
Ai + o(‖A‖).

given that j∗i ∈ arg minj∈M li(j) is unique for every i ∈M.

Here, Wi is a random variable such that Ei [g(Wi)] = E(0)
i

[
g(W

(0)
i )
]

for every

continuous and bounded function g : R 7→ R where W
(t)
i is a random variable

with the distribution

P(t)
i (W

(t)
i ≤ w) =

∫ w
0 P(t)

i

{∑T
(t)
i

l=t log fi(Xl)
fj∗i

(Xl)
> s

}
ds

E(t)
i

[∑T
(t)
i

l=t log fi(Xl)
fj∗i

(Xl)

] , w ∈ R, t ≥ 0,

where T
(t)
i , inf

{
n ≥ t :

∑n
l=t log fi(Xl)

fj∗i
(Xl)

> 0
}

.

4.2 Asymptotic Optimality

The asymptotic optimality in the fixed-error formulation can be obtained by

setting Ai(r) ,
rj∗i i

νi
if the family (τA/(− logAi))A>0 is uniformly integrable.

Asymptotic Optimality in the fixed-error formulation:

lim
‖r‖↓0

inf(τ,d)∈∆(r) Ei [τ − θ| τ ≥ θ]

Ei
[
τA(r) − θ

∣∣∣ τ ≥ θ
] = 1.

The asymptotic optimality in the Bayesian formulation can be obtained by

setting Ai(c) , c
Eie−Wi minj∈M∪{0}\{i} li(j)

.

Asymptotic Optimality in the Bayesian formulation:

lim
c↓0

inf(τ,d)∈∆R
(c,a)
i (τ, d)

R
(c,a)
i (τA(c), dA(c))

= 1.

4.3 Numerical Results (in the Bayesian formulation)

Consider the case where M = {1, 2} with ν1 = ν2 = 0.5, fi is the

density of the normal distribution with mean λi and variance 1 for ev-

ery i ∈ M ∪ {0} and θ is geometric with success probability 0.05.

Figure 1 illustrates the decision rule (τA(c), dA(c)) and the optimal decision

rule (τ ∗, d∗) with a sample trajectory of the posterior probability process Π(ω).

Figure 1. The blue region and the green region correspond to the op-

timal stopping region and the stopping region under (τA(c), dA(c)), resp

ectively, when (a) λ0 = 0.0, λ1 = −0.1, λ2 = 0.1, c = 0.01 (b)

λ0 = 0.0, λ1 = −0.5, λ2 = 0.1, c = 0.05 along with a sample realiza-

tion ω. The red point shows the disorder time θ(ω). The blue and green

points show τ ∗(ω) and τA(c)(ω), respectively.

Table 2 shows the strong performance of (τA(c), dA(c)) in comparison with the

optimal decision rule (τ ∗, d∗) for various values of c when aji = 1 when i 6= j.

c R(τA(c), dA(c)) R(τ ∗, d∗) R(τA(c), dA(c))/R(τ ∗, d∗)

0.05 0.865517 0.860915 1.005344

0.01 0.623135 0.604794 1.030325

0.005 0.490472 0.470261 1.042977

0.001 0.196816 0.194001 1.014512

0.0005 0.118715 0.118339 1.003172
Table 2. The comparison between decision rule (τA(c), dA(c)) and the

optimal decision rule in the Bayesian formulation.
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