
The Need for a Common Concurrency Language

Stephen F. Siegel, University of Delaware, siegel@udel.edu
Manchun Zheng, University of Delaware, zmanchun@udel.edu
Paul Hovland, Argonne National Laboratory, hovland@mcs.anl.gov
Matthew B. Dwyer, University of Nebraska - Lincoln, dwyer@cse.unl.edu

1 Verification and Concurrency

Verification, widely construed, is viewed as an in-
creasingly important problem in scientific comput-
ing. For example, the U.S. Department of Energy
report Top 10 Exascale Research Challenges, in Sec-
tion 11.4: Correctness, states:

Today, most DOE applications do not
employ sophisticated ways of checking the
integrity of their results. Generally a sub-
ject matter expert is involved in verifying
application outputs, but obviously this is
challenging and highly impractical.. . . New
approaches to verification must be consid-
ered.

Researchers have explored a variety of static ap-
proaches to verification. By static, we mean any
technique used to reason about the source code with-
out executing it. These approaches include dataflow-
based and other static analyses, abstract interpreta-
tions, model checking, symbolic execution, and de-
ductive verification using code contracts. The tech-
niques and tools developed target a number of dif-
ferent aspects of “correctness”, including verification
of. . .

• absence of null pointer dereferences, illegal
pointer arithmetic, or out-of-bound array index-
ing

• absence of assertion violations

• absence of memory leaks

• absence of deadlock in a concurrent program

• absence of unnecessary barriers in a concurrent
program

• absence of race conditions in a shared-memory
concurrent program

• the correct use of concurrency APIs; e.g., in MPI
each process in a communicator invokes the same
sequence of collective operations on that commu-
nicator

• the functional equivalence of two programs; e.g.,
a simple sequential version of a program and a
highly optimized parallel version.

When such tools report a violation to a property, they
typically provide more detailed information (such as a
trace) that helps the developer isolate and repair the
defect. Hence they can improve developers’ produc-
tivity, as well as increase confidence in the correctness
of the final product.

One of the main challenges in developing such tools
for scientific computing is dealing with concurrency.
Reasoning about concurrent programs is much harder
than reasoning about sequential programs. More-
over, there is a vast and constantly changing space
of concurrency dialects: MPI, OpenMP, Pthreads,
CUDA, OpenCL, OpenACC, C/C++11, UPC, and
Chapel are just some of the languages and APIs that
are being used by scientists. Each of these dialects
is evolving, with new features being added in every
new release of the respective standards.

The dynamic nature of the concurrency landscape
poses a serious challenge to the developers of verifi-
cation tools. It is hard enough to develop a tool that
targets a single dialect. Astronomically greater effort
is required to port such a tool to new dialects, con-
stantly add support for new dialect features, or de-
vise tools that can analyze programs that use some
combination of dialects (so-called hybrid parallel pro-
grams). The result is that almost all tools target a
single dialect, and there is significant duplication of
effort across projects targeting different dialects.

We propose a solution to this problem: the devel-
opment of a common concurrency language for veri-
fication. The establishment of such a language would
greatly reduce the effort required to update, port,
and develop new verification tools. In the resulting
ecosystem, front-ends would be developed to trans-
late from the various concurrency dialects to the com-
mon language; back-end tools would verify properties
(such as those listed above) for programs in the com-
mon language. When a new dialect is introduced, or
an existing one extended, only the front-end(s) need
to be updated, and all of the verification tools will
automatically work. Dually, if someone has an idea
for a new verification technique, they can implement
it as a back-end, and immediately evaluate its effec-
tiveness on a wide range of concurrency dialects.

What features should the common language ex-
hibit? It should be sufficiently general that all of
the dialects can be automatically translated into the

1

common language with minimal effort. It must also
be amenable to standard verification techniques. It
should be capable of representing shared-memory and
message-passing algorithms with equal ease. It would
also be desirable for the language to be one that hu-
mans can easily read and write directly. In addition
to its use as an intermediate language in a tool frame-
work, it could be used as a lingua franca for express-
ing parallel algorithms, for describing the semantics
of concurrency dialects, and for teaching.

2 CIVL

We have developed a prototype for such a lan-
guage and framework. The framework is named
CIVL: The Concurrency Intermediate Verifi-
cation Language. The language, CIVL-C, extends
the (sequential) C language, adding a number of basic
concurrency primitives and primitives for specifying
intended behaviors. The framework includes front-
ends for MPI, OpenMP, CUDA, and Pthreads. The
front-ends do not yet support their entire source di-
alects, but each supports a significant subset of the
most commonly-used parts of the dialect. The front-
ends also cooperate to work on hybrid programs that
use two of these dialects. The framework currently
includes a single back-end verifier which uses model
checking and symbolic execution techniques to ver-
ify a number of properties, including many of those
listed in Section 1.

The CIVL system is free, open-source software,
available at http://vsl.cis.udel.edu/civl. The
entire system is written in Java 7, and is distributed
as a single jar file. The back-end verifier also uses
one or more third-party automated theorem provers
(currently CVC3, CVC4, and Z3), which must be
downloaded and installed separately. The distribu-
tion includes hundreds of examples and tests, and a
user/language manual. We have also built a simple
web application (http://civl.cis.udel.edu/app)
which can be used to easily apply CIVL to a num-
ber of examples written by us or to a user-provided
example.

Fig. 1 is a simple MPI/Pthreads hybrid program.
The result of the automatic translation to CIVL-C
is shown, excerpted, in Fig. 2. All CIVL-C key-
words, and identifiers introduced in translation, be-
gin with ‘$’. The entire original program is placed
inside a function MPI_Process. The new main func-
tion spawns _NPROCS of these processes, each of which
spawns 2 Threads. On this example, CIVL correctly
identifies a subtle defect resulting in deadlock, and
produces a trace of minimal length culminating in
deadlock.

void * Thread(void * tid) {
int rank, x, y;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
x = 2*rank + (int)tid;
for (int j=0; j<2; j++) {

if (rank == 0) {
for (int i=0; i<2; i++)

MPI_Send(&x, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD);
for (int i=0; i<2; i++)

MPI_Recv(&y, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD, ...);
} else if (rank == 1) {

for (int i=0; i<2; i++)
MPI_Recv(&y, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD, ...);

for (int i=0; i<2; i++)
MPI_Send(&x, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD);

}
}
pthread_exit(NULL);

}

int main(int argc, char * argv[]) {
pthread_t threads[2];
MPI_Init(&argc, &argv);
for (int i=0; i<2; i++)

pthread_create(&threads[i], NULL, Thread, (void *)(long)i);
for (int i=0; i<2; i++)

pthread_join(threads[i], NULL);
MPI_Finalize();

}

Figure 1: MPI/Pthreads hybrid program

$input int _NPROCS;
CMPI_Gcomm GCOMM_WORLD = CMPI_Gcomm_create($here, _NPROCS);

void MPI_Process(int $mpi_rank) {
MPI_Comm MPI_COMM_WORLD =

CMPI_Comm_create($here, GCOMM_WORLD, $mpi_rank);
$pthread_gpool_t $pthread_gpool = $pthread_gpool_create($here);

int pthread_create(pthread_t* thread, ...,
(void* (void*))* start, void* arg) {
...
thread->thr = $spawn start(arg);
...
$pthread_gpool_add($pthread_gpool, thread);
...

}
...

void* Thread(void* tid) {
$pthread_pool_t $pthread_pool =

$pthread_pool_create($here, $pthread_gpool);
int rank, x, y;
...

MPI_Send(&x, 1, MPI_INT, 1, 99, MPI_COMM_WORLD);
...
_pthread_exit((void*)0, $pthread_pool);

}

int $mpi_main() {
pthread_t threads[2];
_MPI_Init();
...
_pthread_exit_main((void*)0);

}

$mpi_main();
CMPI_Comm_destroy(MPI_COMM_WORLD);

}

void main() {
$parfor(int i: 0 .. _NPROCS-1) MPI_Process(i);
CMPI_Gcomm_destroy(GCOMM_WORLD);

}

Figure 2: Translated to CIVL-C (excerpt)

2

