
Developing Sustainable Software for Science Communities Using

Online Platforms, Communications and Workflows

A. K. Patra, T. Kosar, M. D. Jones & S. M. Gallo

Computational Data enabled Science and Engineering,

University at Bu↵alo, SUNY, Bu↵alo, NY 14260

June 2015

Abstract

In this short paper we put forward some ideas
for developing community software borne of our
decade plus years experience in developing such
tools for a well defined community, namely volca-
nologists. In addition to the well accepted notions
of well designed, modular codes with benchmarks
and documentation and lifecycle based design we
also find the following three facets to be of great
benefit. Firstly, a simple online execution platform
to provide access to novice users or for training
and to provide a reference implementation for veri-
fication is very useful. Secondly, we have discov-
ered that tools must to the extent possible, clearly
communicate in documentation and results assump-
tions implicit in the model and algorithm used.
Finally, our tools involve complex workflows for the
data and computing and software that is aware of
this and supports it is more useful.
Keywords: Sustainable software, online execu-
tion, tool limitation, workflows

1 Motivation

Over the last ten plus years we have developed and
helped develop a number of complex modeling tools
for the volcanology community. These tools build in
the latest in physical modeling and numerical/com-
putational methodologies and have proved tremen-
dously popular and have hundreds of installations
worldwide. As we have developed these tools, we
have contributed to the conventional wisdom about
developing such tools, and, many of our observa-
tions have been reflected in findings from recent
NSF funded workshops and such.

Some of the reported findings from workshops
on developing sustainable scientific software that we
have found pertinent are: a) a sustainable software

infrastructure requires designing and building/re-
building the “software right,” and developers should
adopt portable, open, extensible software devel-
opment frameworks and practices to allow easy
intake, sharing, and sustained maintenance of code;
b) Software should be modular, with stakeholders
associated with each module; c) growth of new soft-
ware must be encouraged while balancing the need
to maintain the existing codebase; d) software stew-
ards must actively plan for the lifecycle of software,
transitioning from management to maintenance and
even to deprecation; e) maintaining and evaluating
an evolving set of benchmarks and “hero” codes is
important to the community; f) maintained soft-
ware must include and enforce guidelines for code
contribution.

In addition to these important observations we
put forward a few more principles we have found
beneficial as we develop community software for the
volcanology community.

g) The first of these is the need to support online
execution access.

h) The second, is a need for clear communica-
tion of tool limitations (in terms of the under-
lying scientific theory being implemented) to
the tool user.

i) The third, is the need for developing tools to
integrate better with the full workflow and
providing support for validation and verifica-
tion workflows for the users context.

j) The fourth, is a need to constantly improve
tools by continually refactoring data layouts
and hot spots.

1



2 Online Execution/Training

Scientific users of computational tools (especially
large scale modeling) are an extremely hetero-
geneous group in terms of computational skills,
interests and access to computational resources.
Traditionally, we have had a carefully detailed
training procedures with example problems and
long detailed guidelines and instructions for instal-
lations using config files and such. However, depen-
dencies and complexity of the process provide a
huge barrier to a large class of scientists who could
benefit by the use of such tools. Since, 2009 we have
been developing the online platform vhub.org that
uses the hub zero technology to provide for online
executable versions of all our tools. Thus, anyone
with a browser and the “right” version of Java can
now run the tools or limited versions of them. The
limitations rise from the need to support tens of
users with computing and data resources.

For us as software developers these online plat-
forms have provided a reference implementation
that we can quickly use for unsophisticated user
initiation and verification of tool correctness. As
users mature, they often will graduate to the full
local installation of the tools.

Thus this online execution environment provides
a standard well managed hardware/software plat-
form and approaches to standardize the documen-
tation associated with input data, source code, and
output data. This will ensure that model calcula-
tions are reproducible even as the execution envi-
ronment evolves through rapidly changing develop-
ments in hardware (many and multi-core architec-
tures), middleware e.g. Message Passing Interface
MPI and that consistent information is available for
analysis of results and extension of previous runs
with new parameter values. This investment is crit-
ical if modeling and simulation are to gain regular
use in risk mitigation.

3 Tool Limitations

In high end scientific modeling of complex phys-
ical phenomena, many assumptions must be made
to make computable the underlying mathematical
models. However, once a tool is released for public
domain usage most of these assumptions are only
specified in the papers and sometimes in rarely
used technical reference manuals. As we have seen
users will often use these in contexts far beyond
those justified by the initial users. For instance
we discovered in the literature that our dry gran-

ular avalanche tool TITAN2D was used by a group
to model subaqueous landslides with no decla-
ration of how the users had accounted for this.
Careful analysis revealed that the users had arti-
ficially depressed one of the parameters to compen-
sate. Such “o↵-label” usage is interesting and useful
as long as the limitations are clearly understood.
As software tools become increasingly accepted as
surrogates for physical experimentation it is impor-
tant that fitness of purpose of the tool is carefully
documented and where possible enforced. We have
started reinforcing this in two ways. Firstly, we will
provide default ranges for all input variables and
use of numbers beyond this will provide warning
messages embedded in the output files. Secondly,
we are working on a system to guide users through
the model definition and parameter choice phase
where the user will be asked to satisfy the neces-
sary assumptions.

4 Workflow Issues

Simulation and analysis tools often need to use data
that may or may not be locally available. Work-
flow systems that map task execution to highly-
distributed dynamic runtime environments must all
deal with the low-level data handling issues . To
e↵ectively schedule, a workflow planner must either
send jobs to sites where data resides, or should
include stage-in and stage-out steps in the workflow
to make sure that the data arrives to the execution
site before the computation starts. In the latter
case, several other steps may need to be included
in the workflow, such as allocating the disk space
needed by the jobs, and deleting the data once it
is no longer required, at optimal points. These
strategies must recognize caching needs and each
workflow’s unique data access pattern, as well as
predicting the future needs for cached files. Simu-
lation tools need to provide the right hints to the
workflow tools to facilitate these processes.

A second consideration for workflows is the need
to support statistical analysis of model outcomes for
model validation and uncertainty quantification. In
either case we need to run a large ensemble, extract
the relevant outcome files and perform statistical
analysis on these. The data migration and I/O
involved is often a rate limiting step in this process.
Since these processes are integral to e↵ective usage
of these tools it is now incumbent upon us to
provide appropriate support for these workflows in
the tools.

2


