
The curse of growing scales: from inception
to successful community-driven software

development
V. S. Mahadevan∗, A. Siegel

Mathematics and Computational Science Division
Argonne National Laboratory, IL 60439

Email: mahadevan@anl.gov, siegel@mcs.anl.gov

Sustainable HPC software development requires careful
planning, design and implementation from the ground up,
as growing demands during the product evolution ren-
ders static processes that were successful at a smaller
scale untenable, when scope and resource requirements
expand. This white paper aims to address some relevant
questions to tackle the curse of growing scales in sci-
ence and resources (human and computing) during var-
ious stages of scientific software evolution.

INTRODUCTION
Sustainable HPC software development requires

careful planning, design and implementation from the
ground up, as growing demands during the product evo-
lution renders static processes that were successful at a
smaller scale untenable, when scope and resource require-
ments expand [1]. Even a powerful computational solver
with an efficient implementation that is verifiably accu-
rate, needs to be designed flexibly with good software
engineering practices in order to be successful longer
term and to build a community of dedicated users (e.g.,
FLASH, PETSc, Trilinos, FEniCS). Software processes
such as SCM, SQA (unit/regression test suites), language
and scientific library interoperability provide confidence,
improve usability and encourage collaboration in the de-
velopment of the tools. Additionally, extensive verifi-
cation of code portability, especially on LCF machines
and performance regressions are essential to continually
maintain software robustness on both current and evolv-
ing future architectures.

The inception of compelling algorithms, approaches
or methodology and its transformation into a complete
product necessitates careful software design principles. In
this short paper, we focus on relevant questions to tackle
the curse of growing scales in physics resolution, funding
needs, resources (human and computing), which are tied

∗Corresponding author.

closely to each other [2] and hurdles that can impede suc-
cess over long term (decades of man-years) development
of software projects.

I Pilot scale
The initial stages of scientific software development

in a project require rapid code changes and experimenta-
tion in design, motivated by several key factors.

1. Flexible interfaces that support feature extensibility,
2. Utilization of standard software design patterns when

possible,
3. Support for multi-language interoperability (For-

tran/C/C++/Python/Julia),
4. Test driven development (TDD) to considerably re-

duce delivery turnaround time,
5. Extensive unit and integration test coverage (e.g.,

gcov, lcov) and flexible test frameworks (e.g., Build-
bot, Jenkins) to effectively catch regressions,

6. Static code analysis (e.g., clang, cppcheck, ROSE),
eliminating memory leaks/corruption (e.g., valgrind)
for a robust end product.

7. Application scope: Solving demonstration problems
to identify numerical and performance model bottle-
necks.

II Mini scale
The advancement of scientific software (complex ap-

plications or libraries) needs vastly different use-cases to
continually improve and add feature sets that attract ded-
icated new users.

1. Verify configuration/build systems on different archi-
tectures for reliability,

2. Interoperate with verified scientific software li-
braries; increases dependencies while leveraging
previous efforts to build a well-balanced scientific
ecosystem.

3. Accommodating user requests and minimizing barri-
ers for acceptance



(a) Extensive documentation and examples for im-
proved usability,

(b) Tutorials and user group meetings for closer in-
teraction with developers,

(c) Utilizing social media (Google+, Twitter,
Youtube) and dedicated websites to showcase
success stories,

(d) Explicit online access to mailing lists, forums
and developers for advanced one-to-one discus-
sions that might blossom into collaborations

4. Application scope: Increased experimentation in
terms of optimal computational algorithms and im-
plementation of abstractions for general class of
problems through continually evolving example sets
and a range of complex applications.

III Macro scale

Keeping abreast with increasing resource require-
ments (funding, people and access to hardware), feature
lists can grow in an open-source software environment in
several positive directions, even unforeseen while draft-
ing the vision at pilot scale.

1. Repository hosting on community-based websites
like GitHub or BitBucket encourage feature submis-
sions (PR) and code discussion/review processes,

2. Multi-disciplinary collaborative proposals with vari-
ous use-case teams,

3. Publications and conference presentations to dissem-
inate capabilities,

4. Hiring of talented postdoctoral candidates, computa-
tional scientists and software engineers to alleviate
research, support and maintenance needs.

5. Application scope: Increased application resolu-
tions in terms of advanced discretization methods,
solver/preconditioner choices, and strong focus on
scalability/time-to-solution for large-scale problems
on LCF machines.

IV Distributed scale

This is the community driven distributed develop-
ment workflow by leveraging collaborations lead to long-
term, large-scale sustainable software development [3].
Several challenges do hinder progress at this scale.

1. Tackling the exponential inflation in libraries that in-
teract, models that are coupled and hardware addi-
tions that complicate software portability; develop
additional abstractions and re-focus extensibility to
alleviate concerns.

2. Reward metrics: Currently, the merit-to-effort ra-
tio is inversely proportional to software development
growth, since increase in users necessitates more
time, resources and funding. As a broader compu-
tational community, processes are necessary to gain
credit for developing reproducible, scalable scientific
software.

3. Application scope: Production ready, maintaining
performance and software portability, coupled multi-
physics/multi-scale applications with varying com-
plexity to do predictive computational science.

SUMMARY
We have structured this whitepaper based on grad-

ual scale advancements that are quintessential to most
successful projects and have attempted to provide char-
acteristic guidelines on achieving sustainability in scien-
tific HPC software. It is imperative to note that there are
no magic bullets [4] to address all the complex compu-
tational workflow needs of various scientific software de-
velopment teams, and hence it is vital to identify key com-
ponents that can be incorporated in these workflow pro-
cesses to enable sustained increase in scientific research
through better software productivity.

The Computational Science and Engineering
Software Sustainability and Productivity Challenges
(CSESSP1) workshop is an ideal avenue to discuss
these hard issues and to provide best practices to the
broader computational science community for achieving
distributed scale, community driven scientific software
development.

REFERENCES

[1] Katz D. S. et al., (2014) Summary of the First Work-
shop on Sustainable Software for Science: Practice
and Experiences (WSSSPE1), Journal of Open Re-
search Software, 2: (1).

[2] Senyard A., Michlmayr M., (2004) How to Have a
Successful Free Software Project, in Proceedings of
Software Engineering Conference.

[3] Godfrey M. W., Tu Q., (2000) Evolution in Open
Source Software: A Case Study, in Proceedings of
the International Conference on Software Mainte-
nance (ICSM’00).

[4] Brooks F.P., (1987) No Silver Bullet – essence and
accident in software Engineering, Computer, 20:
(4).

1CSESSP: https://www.nitrd.gov/csessp/

https://www.nitrd.gov/csessp/

	Pilot scale
	Mini scale
	Macro scale
	Distributed scale

