
User-Extensible Compiler Toolchains for Refactoring CSE Software

Christos Kartsaklis1, David E. Bernholdt1, and Dali Wang2

1Computer Science and Mathematics Division, Oak Ridge National Laboratory
2Environmental Sciences Division, Oak Ridge National Laboratory

Refactoring for performance optimization and porting to new architectures has become par-
ticularly challenging in the accelerator and offload computing era, where CSE software must be
adapted by offloading processing to highly-parallel, exotic computational devices. The transfor-
mations entail gory details, often affecting the organization of data structures, the layout of loop
nests and various code pieces. Data structures must be optimized for vectorized operations, fully
or partially duplicated and moved from host to accelerator device. Loops often have to have their
iteration space rearranged (tiling, fusion, etc.) and shared between host and accelerator devices.
Code needs to be moved around; extracted, synchronized or repackaged for testing; specialized for
optimization; generalized for reuse and cloned for cross-compilation.

Specifically, it is desirable to streamline the process of identifying and transforming compu-
tational kernels, as uninterruptedly to the code base as possible. This, we argue, requires new
compilation abstractions that can be defined and directed by the CSE developer to complement
the compilation toolchain.

Many tools, such as polyhedral compiler technology, stencil optimization toolkits, etc., expect
the user to pre-process, isolate, or otherwise “normalize” the source code before feeding it to
them. While these tools are backed by formal theory, and thus validating, the whole task can be
intense and even impossible without removing offending code. Our collective experience supporting
computational scientists with in-house and vendor-requested tools shows that the developer wants
to transform sources with the least possible effort in order to explore an optimization path that
they have worked out on paper, because they simply want to try out an idea. Productivity is not
confined to just being able to describe and have a system that implements a custom refactorization

Work is supported by “IDEAS: Interoperable Design of Extreme-scale Application Software” and
sponsored by the DOE Office of Science, Offices of Advanced Scientific Computing Research (ASCR) and
Biological Environmental Sciences (BER).

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



task. When a user identifies a good refactorization, or generally a good software engineering
solution, it becomes immediately highly desirable to answer the following question: which other
parts of the code base can benefit from it also? Pattern-, feature- and clone-driven approaches,
for instance, attempt to locate code that shares some similarity (or determine so dynamically),
under the assumption that the likelihood of a refactoring being reusable is subject to the similarity
metric.

A recent development in addressing these issues is based on a rather familiar to the CSE
community mechanism: compiler directives. Similarly to directive APIs for parallel computing
(OpenMP/OpenACC), directives are being defined for allowing the CSE developer (1) to extract
characteristics from one code base or notify the compiler of which computational kernel a fragment
of the CSE application resembles, (2) to construct and apply custom transformations by tagging
the source code parts of interest, and (3) to combine or chain the two to facilitate custom analysis
and transformation workflows ([4, 3, 2, 1, 5]).

References

[1] Huimin Cui, Jingling Xue, Lei Wang, Yang Yang, Xiaobing Feng, and Dongrui Fan. Extendable
pattern-oriented optimization directives. In Code Generation and Optimization (CGO), 2011
9th Annual IEEE/ACM International Symposium on, pages 107–118, April 2011.

[2] C. Kartsaklis, O. Hernandez, Chung-Hsing Hsu, T. Ilsche, W. Joubert, and R.L. Graham.
Hercules: A pattern driven code transformation system. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 574–583,
May 2012.

[3] Christos Kartsaklis and Oscar R. Hernandez. Hercules/pl: The pattern language of hercules.
In Proceedings of the 1st Workshop on Programming Language Evolution, PLE ’14, pages 5–10,
New York, NY, USA, 2014. ACM.

[4] Christos Kartsaklis, Eunjung Park, and John Cavazos. Hslot: The hercules scriptable loop
transformations engine. In Proceedings of the Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Computing, WOLFHPC
’14, pages 31–41, Piscataway, NJ, USA, 2014. IEEE Press.

[5] Xiong Xiao, Shoichi Hirasawa, Hiroyuki Takizawa, and Hiroaki Kobayashi. An approach to
customization of compiler directives for application-specific code transformations. In Proceed-
ings of the 2014 IEEE 8th International Symposium on Embedded Multicore/Manycore SoCs,
MCSOC ’14, pages 99–106, Washington, DC, USA, 2014. IEEE Computer Society.


