
Best Practices for Large Scientific Codebases

Dan Ibanez1

1Scientific Computation Research Center, Rensselaer Polytechnic Institute

May 19, 2015

1 Background

The Scientific Computation Research Center at Rens-
selaer Polytechnic Institute engages in collaborative
development of large scientific codes. Currently,
we develop the PUMI parallel unstructured mesh
tools (https://github.com/SCOREC/core), collabo-
rate with Sandia National Labs in developing the
multi-physics application Albany (https://github.
com/gahansen/Albany) based on their popular Trili-
nos tools (http://trilinos.org/), and collaborate
with U. Colorado in developing their popular fluid ap-
plication PHASTA (https://github.com/PHASTA/
phasta). We also develop interfaces for PUMI and
Albany to proprietary tools provided by Simmetrix,
Inc. (http://www.simmetrix.com/) and develop
various simulations for IBM.

Several of these projects have recently moved to us-
ing the Git version control system, and new lessons
have come from that experience, as well as much ex-
isting experience from earlier development.

2 Version Control

Distributed Version Control Systems (DVCS), espe-
cially Git, are becoming the norm for managing code.
There are two practices which seem highly effective
within this modern paradigm: keeping most code in
one repository and merging effectively.

Keeping most code in one repository may be con-
troversial, as we know that managing complexity re-
quires separation of code into components. However,

the public interface and internal behavior of these
components change. When that happens, having a
snapshot state of all the code allows all the affected
code to be updated, built, and tested, usually by
the developer changing the component. Dependency
management is easier within a single repository, and
placing one’s component in the repository protects it
from future changes in other components.

Several widespread changes in Trilinos and Albany,
namely the adoption of Tpetra and now Kokkos com-
ponents, benefited from these advantages.

In order to remain relevant, changes must make it
to the central version of the code. Branches, forks,
and clones in practice have a lifecycle which begins
with the building up of changes and ends one of
three ways: merged, forgotten, and spawning a new
project. New projects are rare because they take
developers away from existing projects, so in prac-
tice branches are either merged or forgotten. Again,
merging is necessary protection from future changes.

If each piece of code has a clear owner, changes
by owners to their own code can be committed di-
rectly without much trouble. Larger groups with
stricter expectations employ some form of review sys-
tem. Unlike journal article review systems, code re-
view systems must process submissions in a matter
of hours and often must accept the majority of sub-
missions (with varying degrees of revision) in order
to succeed.

All of the above are also practiced by large compa-
nies like Facebook and Google, as well as the open-
source Linux project [3].

1

https://github.com/SCOREC/core
https://github.com/gahansen/Albany
https://github.com/gahansen/Albany
http://trilinos.org/
https://github.com/PHASTA/phasta
https://github.com/PHASTA/phasta
http://www.simmetrix.com/


3 Compilation

Code is usually either being installed for the first time
or re-compiled to test new changes. Installation is
the first impression received by new developers, and
should be as painless as possible. Example configura-
tions for common architectures and instructions for
porting to new ones are very useful. Incomprehen-
sible installation is more of a deal-breaker than very
slow installation.

Incremental compilation is a critical bottleneck
when maintaining a scientific program, including de-
bugging and enhancement. Seminal works in Soft-
ware Engineering attest that maintenance consumes
the majority of a developer’s time, and our own expe-
rience confirms this [1, 2]. Therefore we should design
with maintenance in mind, including fast incremental
compiles.

It does bear mentioning that C++ has a tendency
to include many large header files from each source
file, which increases compile time. C++ templates
exacerbate this tendency, and so despite their bene-
fits they should be used with more moderation due
to this disadvantage. Linking is another consumer
of incremental compile time that has less clear so-
lutions. There are mitigation techniques to the is-
sues described above such as pre-compiled headers
and shared libraries, but prevention is preferable to
mitigation.

4 Open Source

Whether a piece of code is a research group’s latest
idea, a company’s trade secret, or a national security
concern, it may be best kept hidden. For other code,
making it open source almost always improves the
quality and support. Being open is the first step to
having a large organization or community depend on
it, which in turn results in “job” security for the code.
MPICH, PETSc, Trilinos, and Albany are examples
of this.

What we propose is that most code be made open
source, and that there be discipline to develop first in
the open source space and then porting to the private
space, rather than the other way around. If active

development happens in the private space, there is
little incentive to share the results and trivial features
are unnecessarily classified as secrets. Developing the
latest features in the open (when possible) exposes
the private developers to the same experience as the
rest of world when bringing those features back from
the open to use them in private, which is an incentive
to maintain a good open repository. This is being
practiced by the PUMI tools, which have an optional
proprietary component.

References

[1] Frederick P Brooks. The mythical man-month,
volume 1995. Addison-Wesley Reading, MA,
1975.

[2] Robert L Glass. Facts and fallacies of software
engineering. Addison-Wesley Professional, 2002.

[3] Ashish Kumar. Development at the speed and
scale of google, 2010.

2


	Background
	Version Control
	Compilation
	Open Source

