
HPCMP CREATE™-AV Quality Assurance: A Model for Development and
Sustainability of Computation-Based Engineering Software

Benjamin P. Hallissy, Joseph P. Laiosa, Theresa C. Shafer
David H. Hine, James R. Forsythe, Jennifer Abras,

NAVAIR, Patuxent River NAS, MD

Nathan S. Hariharan, Cynthia Dahl
HPCMP, Lorton VA

CREATE-AV is an initiative within the DoD High Performance Computing Modernization Program (HPCMP)
Computational Research Engineering Acquisition Tools and Environments (CREATE) Program tasked with
developing multi-disciplinary, physics-based simulation software to improve the efficiency of overall acquisition
process. The CREATE-AV program is focused primarily on air-vehicles (AV). An important aspect of this task is
the efficient development, maintainability, training and sustainment of the developed software product. At the center
of this process, within the CREATE-AV development program is a group designated as the Quality Assurance (QA)
Team.

The QA Team is currently headquartered at Patuxent River Naval Air Station, Patuxent River MD, and has
representatives in Florida, Dayton and Connecticut. The QA group interacts closely with the CREATE-AV
development teams across the nation, in sites such as NASA Ames (Rotorcraft tools), Wright Patterson AFB
(Conceptual design tools), NAVAIR and Eglin AFB (Fixed-wing tools). Interacting with these distributed
organizations requires close communication and tools for efficient collaborative work. HPCMP CREATE has
enabled this through the use of web based issue tracking and documentation software, Atlassian JIRA.

Though often taken for granted, the fact that commercial software products work, almost without fail, to the
consumer’s satisfaction is actually the result of a concerted effort to build quality software. The same concerted
effort should be present in the production of software designed for computation-based engineering (CBE). This
paper will focus on the role that the CREATE-AV Quality Assurance Group plays in consistently delivering quality
state-of-the-art CBE software for the HPCMP CREATE-AV program.

Within the CREATE-AV, the QA group operates independently of all the development groups, thereby offering an
objective analysis of the software under development. This position has allowed the QA Team to develop, with the
assistance of the developers and users, a unique test and deployment process. This multi-tiered system provides an
efficient and flexible process which is easily adapted to wide variety of software products and users. A brief
description of the process is given below.

Quality Assurance (QA) Testing
One of the key functions of the QA group is to conduct independent QA testing for each major product release. In
the CREATE-AV program, computational tools endure six levels of testing prior to general release. These are listed
in chronological order below:

1. Unit Tests (Developers)
2. Integration Tests (Developers)
3. Alpha Tests (Select Users)
4. Quality Assurance Test (QAT) / Regression Tests
5. Exit Tests
6. Beta Tests (Omitted for interim releases)

In the early days of CREATE, the Quality Assurance Test (QAT) was called the Product Acceptance Test (PAT).
The idea (similar to DoD acquisition process) was that all software products would have to pass a final set of
pass/fail tests performed by the independent QA group prior to a yearly release. As releases became more frequent,

however, and as capabilities began to be introduced and matured over several interim versions, the sense of a
massive, one-shot-per-year test gave way to a collaborative testing process in which QA is engaged continually with
the development teams year-round. Today’s QATs represent a broader perspective than the simple “pass/fail” tests
of old. QATs now include (among other things) injecting a user perspective—pushing the boundaries of the
applications that users may require; complementing internal testing, working with the development teams to fill in
any gaps; finding and probing weaknesses found during QA and user interactions; and ensuring that prior results are
reproducible by an independent group.

Release
The software release process may involve several iterations with the development team. For instance, if any test in
the fundamental physics or applications test suite fails, the code goes back to the development team to be fixed and
retagged as a new version. Similarly, if a bug or slowdown has been introduced into the GUI, the code goes back to
the development team to be fixed and retagged. For major releases, the entire QA team will be hands-on with the
GUI, working to root out any deficiencies.

User Support
Once the software moves out the door and into the user’s hands, the QA team is on the front lines—fielding user
questions and requests for new features, offering support when needed. In this process all issues are tracked within
JIRA web based system so they can be assigned and monitored efficiently by both the developers and the QA Team.
Thus the QA team acts as an important bridge between the developers who produce the code and the client base
using the code, facilitating communication between the two groups and significantly reducing the time developers
need to spend on user support so that they can focus on software development.

The users are first provided with several self-help options – tutorials, documentation, and quick-start guides. If no
resolution is found following a self-guided investigation, or if the user prefers direct communication, they may
contact CREATE-AV quality assurance by forum, phone, or an online ticket submission system. QA will then
perform an analysis of the issue and act to facilitate a resolution, based on the nature of the problem. Importantly,
the support ticket is tracked by QA during the process, and the user is kept informed through all stages of issue
resolution.

When confusion is caused by a user error, a lack of training, or a lack of documentation, QA recommends a fix or
workaround to the user, modifies the training/documentation as needed, and resolves the ticket. In the case of bug
reports, QA attempts to duplicate the bug by creating a surrogate test case (which can be especially important when
dealing with proprietary or sensitive simulations) and narrow down the potential scope of the bug (e.g. answer the
question: “In which version was it introduced?”) before handing the ticket off to the product development team.
Such surrogate tests often have helped to pin down potential incorrect use of the software that can be corrected
without involving the time resources of the development teams.

Additionally, upon release of a new version with additional capabilities, on-site training sessions are held around the
country. Such targeted training limits user error and enables a smooth transition to a new version. The size of these
training sessions have ranged from 3 to 30 users per session, with varying levels of formality, but in each case
students have hands-on access to the software. Hands-on practice combined with instructor guidance is consistently
cited as the most beneficial aspect of training. We’ve found that an instructor-student ratio of 1:5 is generally
sufficient. To date, as a broad measure of training quality, over 93% of participants said they would recommend the
training to a friend.

The training material is detailed but flexible and can be used for self-paced instruction. In addition, the user
community forums (one for each CREATE-AV product) are an active learning environment with users posting
suggestions, bugs, and workarounds. The QA team has also deployed several short video tutorials which
supplement the written training material and provide an efficient refresher when returning to the CREATE toolset.

Best Practices / Lessons Learned
Below is a summary of the quality assurance “lessons learned” throughout CREATE’s 7-year (ongoing)

experience in deploying CBE tools to the DoD workforce.

A. User Training
• Clearly define the scope of all training, both in advertisements and the day of. Also tailor to experience level,

both subject expertise and with a particular code.
• Emphasize the best-practices of your code, and then emphasize them again. Otherwise, if a new user is

familiar with a different type of simulation or a different software package, they will tend to revert to parameters and
settings that are familiar.

• Train the users who will be using the code, not their managers (no matter how technical). If managers insist on
training, present a high-level capability overview.

• Without knowing your users, you cannot train them effectively

B. User Support
• Gather as much data about users as reasonable. (What is their interest in the code, how did they hear about it,

do they have experience with these types of codes, do they want training, are any of their colleagues using it, etc.)
• Keep users informed as bugs are fixed and feature requests implemented.
• Without knowing your users, you cannot support them effectively.
• Clearly explain which changes or updates are contained in each new product version to prevent unnecessary

user whiplash.

C. Quality Assurance
• Maintain close communication with development teams. Weekly or bi-weekly stand-up meetings go along

way toward maintaining that relationship.
• QA cannot be seen as or positioned as the adversary of the developer. Rather, QA can be thought of as an aid

– able to remove (to some extent) the support and training burden from the overtaxed developer, and able to pass
user needs and feedback directly to the development team – valuable grassroots

feedback that can be missed with your head buried in code.
• Despite its clear importance, QA’s focus should not be entirely on VV&Q. Consistent (up to date) and

thorough documentation is critical in order to minimize user frustration. Training must correctly set the expectations
of users.

D. VV&UQ

• Automate basic testing phases (unit, integration, system tests).
• Automate regression and validation tests for each advertised capability (e.g. relative mesh motion, moving

control surfaces, actuator disc, etc.)
• VV&UQ are computationally and human resource intensive – must prioritize efforts based on immediate

software requirements and use cases.
• To the extent possible, limit manual testing to three primary efforts:
 o GUI exercising
 o Closely inspecting the results (spot checks) of automatic tests

 o Development of tests for NEW capabilities, or known weaknesses in automatic test suite.

Conclusion

In conclusion, the CREATE-AV Quality Assurance team provides three critical functions for successfully fielding
computationally based engineering (CBE) software: (i) Independent internal testing (ii) User support and end-user
avocation in the software development process (iii) Continual training and online deployment. This paper

also summarizes the best practices learnt and implemented by the QA group in response to a growing CREATE-AV
user base and their needs over the past several years. These practices have positively impacted development, ensured
sustainability, and significantly expanded AV software’s user base. It is believed that the form/function of the
CREATE-AV QA team and the distilled best practices can be of direct use the development and deployment other
CBE software development efforts in a wide variety of scientific areas.

	HPCMP CREATE™-AV Quality Assurance: A Model for Development and Sustainability of Computation-Based Engineering Software
	Quality Assurance (QA) Testing
	Additionally, upon release of a new version with additional capabilities, on-site training sessions are held around the country. Such targeted training limits user error and enables a smooth transition to a new version. The size of these training sess...

