
Real Interoperability Among Libraries

A. Dubey and H. Johansen

October 6, 2015

There are many scientific and numerical libraries available today that offer a wide range of
well-designed, scalable and robust solvers. However, transparently switching between subsets
of solvers from multiple libraries remains an elusive target. The difficulty comes from two
orthogonal axes of interoperability challenges in scientific software. One is heterogeneity in
the demands that different solvers place upon system hardware and software in terms of size of
memory needed, communication patterns, memory access patterns, byte/flop ratio and best
work distribution among resources. The second relates to difference in discretization methods
that can bring in the method order, accuracy and other coupling issues in the numerical sense.
An attempt to use solvers from different libraries adds a third dimension to the interoper-
ability challenge: compatibility of implementations and builds. There have been attempts to
generate codes out of combining the libraries, but they have had very limited success. Par-
ticularly in high performance computing (HPC), such stitched-together codes often do not
meet the performance goals, and so become limited to conceptual testing and prototyping.
At best, codes are specialized and branched to scale, which creates more scalable versions
but increases maintenance burden for all the libraries. While that is progress, a more com-
prehensive solution that can compose a production grade application out of a collection of
libraries remains a distant solution. This is not because of an inherent flaw in the libraries,
instead, it is because the libraries grew independently and made design choices independent
of one another. Now there is far too much invested in the implementations to alter them to fit
well with one another. In general scientists would prefer to use libraries instead of developing
their own solvers if the libraries were easy to use. A great deal of numerical expertise is
invested in the libraries that is hard to duplicate for a typical science team. The ideal
situation from a scientists perspective would be to have all the needed libraries interoperate
with each other seamlessly. This would give them freedom to explore a large solution space
for finding the most suitable combination for their purposes. The importance of achieving
such interoperability is well known but there are real obstacles in the path, illustrated here
with a few examples. The first example is Chombo-crunch which uses Chombo for AMR mesh
management and PETSc for the elliptic solves. The mapping of data from AMR to PETSc is
less scalable than the solver itself. Another example is FLASH which uses hypre for radiation
solves with mesh replication. The homegrown solver scales and performs significantly better,
but does not give good results. The hypre based solution is scientifically good, but has scaling
and thread interoperability challenges. A third example is the advanced multi-physics package
(AMP), 1 which combines libraries to generate applications. It has proven to be extremely
useful for proof of concept or prototyping activities, but the developers of the framework

1



concede that using it for production requires short-circuiting or focused optimization. With
the advent of heterogeneity in platforms that focused optimization is not really a feasible
option. Though the community has known the potential benefits of interoperability, achieving
it has proved to be extremely difficult. The challenge is as much sociological as it is technical.
The sociological challenge involves partnerships at the interface between CS and numerical
algorithm expertise, where performance-focused application design is merged with the expe-
rience with the trade-offs and non-ideal factors affecting real execution times. Translating
this into a structured approach may be able to provide a path to solving the technical chal-
lenge. First we limit the scope of the problem being solved at a time, and then we search for
opportunities to turn the excess resources and the deeper hierarchy to our advantage instead
of it being a challenge. To limit the scope we can focus on pair-wise instead of generic inter-
operability because libraries are used in pairs more often than in triples or higher numbers.
In future machines, we will have a lot of processing power and a deep memory hierarchy.
It is extremely difficult to design codes to use this extra processing power homogeneously
without running into bandwidth contention and stalls. Therefore, a better approach is to
allow heterogeneous mapping of work to cores. Some cores could focus on the floating point
operations while others could be assembling the needed working set in higher levels (further
away from CPU) of memory hierarchy through data orchestration. The idea is similar to
directed prefetching, but here it would be explicitly managed by each library pair. It will
involve a great deal of work on the part of the developers, and will require some parameters
that can allow this data mapping process to be tunable to the target platform. However,
taking this approach might just make an otherwise impossible problem tractable.

2


