
ar
X

iv
:s

ub
m

it/
13

68
13

0
 [c

s.
O

H
]

2
O

ct
 2

01
5

Addressing sustainability and performance
portability challenges in Albany

Irina Demeshko∗, Andrew G. Salinger∗, Michael Heroux∗
∗ Sandia National Laboratories, Email: ipdemes@sandia.gov

Abstract—Together with continuously changing HPC archi-
tecture, efforts needed for developing, porting, rewriting, and
tuning the software have increased. Scientists are finding it
increasingly costly and time-consuming to write, port, or rewrite
their software to take advantage of the new hardware. Therefore
software sustainability and performance portability are very
important issues to be addressed in scientific codes. We address
these two issues in the Albany finite element code development
framework.

I. I NTRODUCTION

Progress on scientific research is strongly dependent on the
quality of the software at different levels and it is important
to address the most critical challenges today. We consider
software sustainability and performance potability are very
important issues and address them in the Albany [1] code.

Albany is a C++ object-oriented, parallel, unstructured-grid,
implicit finite element code for solving partial differential
equations (PDEs) in various fields of engineering applications.
The code is designed for the rapid development of finite-
element analysis capabilities enabled through the concept
of components-based code design, making pervasive use of
libraries from the Trilinos [2] suite. Albany hosts several
science and engineering application projects – including the
Ice Sheet simulation capability, the LCM mechanics research
code, and the QCAD quantum device simulator.

The concept of Software reuse is important in relation to
evaluating software sustainability. To be sustained over time,
software needs to be be both useful and adaptable. It also
needs to evolve as the users needs evolve. The potential for
reuse is therefore a key factor in the sustainability of software.
Albany’s components-based design and focus on using existing
libraries when possible fully exploit code reusability and
adaptivity advantages.

Another capability of Albany is performance portability, or
the ability of a code to perform with a reasonable degree of
efficiency on newly emerging architectures, without havingto
be re-written. We choose the Kokkos [3] programming model
from Trilinos as a tool to provide performance portability for
the Albany code .

II. A LBANY ’ S SOFTWARE SUSTAINABILITY

There are several definitions for the ”Sustainable Software”.
One is about how well a piece of software will be able to
cope with changes. This relates to qualities such as reliability,
maintainability, as well as to development paradigms such as
Agile [4].

Albany was written to drive and demonstrate an Agile-
Components strategy for application code development. This
approach builds application codes primarily from modular
pieces, such as independently developed software libraries.
The idea is that by making extensive use of external libraries,
the application code can remain focused on the PDE develop-
ment and have access to numerous algorithms, each written by
domain experts, where the cost of verification and maturation
are amortized over many projects.

Albany employs the graph-based evaluation approach as
provided by the Phalanx package [5]. Here the residual eval-
uation for a given PDE problem is decomposed into a set
of terms, each of which is encoded into a Phalanx evaluator.
Each evaluator encodes the variables it depends upon, the
variables it evaluates, and the code to actually evaluate the
term. Phalanx then assembles all of the evaluators for a given
problem into a directed acyclic graph representing the fullPDE
residual evaluation for a given set of mesh cells stored in a
data structure called the field manager.

This approach improves code reuse by allowing common
evaluators to be used by many problems and allows a wide
variety of multi physics problems to be easily constructed.
Together with the strategy of using existing highly reliable
and well-maintained libraries, evaluator-based models used in
Albany provide robustness to the software.

III. PERFORMANCE PORTABILITY IN ALBANY

Porting large, complex scientific and engineering appli-
cations to current HPC architectures has become a very
complicated task given the diverse programming models,
application programming interfaces (APIs), and performance
requirements. A major challenge in utilizing HPC resources
is the diversity of devices on different machines, which pro-
vide widely varying performance characteristics. A program
optimized for one architecture may not run as well on the
next generation of processors or on a device from a different
vendor. Therefore performance portability has become a criti-
cal issue: parallel code needs to be executed correctly and be
performant despite variations in architecture, operatingsystem
and software libraries.

One of the major obstacles to performance portability is the
diverse and conflicting set of constraints on memory access
patterns across devices. Contemporary portable programming
models address many-core parallelism (e.g., OpenCL [6],
OpenMP 4.0 [7], OpenACC 2.0 [8]) but fail to address memory
access patterns.

http://arxiv.org/submit/1368130/pdf

Sandia’s strategic path to achieving performance portability
on next generation architectures is to develop a programming
model that supports abstractions for data layout and algorithms
that take advantage of concurrency. The advantage of this
approach is that application developers can write numerical
kernels once and get them to perform efficiently on a wide
variety of current and future architectures. Support for these
capabilities are collected in a software package called Kokkos.

Kokkos is a C++ template library that provides a single
portable API without exposing the programmer to device-
specific programming models such as CUDA, pthreads [9] and
OpenMP. The two foundational abstractions of Kokkos are (1)
dispatch work to a manycore device for parallel execution and
(2) manage multidimensional arrays with polymorphic layouts.
The integration of these abstractions enables users code to
satisfy multiple architecture specific memory access pattern
performance constraints without having to modify their source
code. Performance portability of Kokkos has been investigated
in [3]

In order to achieve performance portability, Albany refac-
tored to use the Kokkos library. It uses Kokkos data types
at a base layer that provides portability across different
architectures. To run Albany thread-parallel on multi-core
architectures we need only replace Albany evaluators with
Kokkos functors.

Since Albany depends on other packages from Trilinos,
such as Phalanx (manages dependencies between different
components of the Albany and manages data in the code)
and Intrepid (library of interoperable tools for compatible
discretizations of Partial Differential Equations), we needed
to refactor these packages to use Kokkos as well.

A new Albany-Kokkos implementation is a single code base
that runs and is performant on diverse HPC architectures, and
is expected to be performant on future architectures that are
supported by the Kokkos library. Evaluation experiments show
good performance results for a single implementation across
three multicore/many-core architectures [10]: NVIDIA GPUs,
Multicore CPUs, Intel Xeon Phi.

IV. CONCLUSION

When choosing software design and architecture – regard-
less of the current needs and goals – it is important to
think about the future. While a software product can satisfy
today’s needs it is not always clear if it will comply with
tomorrow’s requirements. Therefore software sustainability is
a very important issue to be addressed in scientific codes.

Albany provides sustainability through the AgileCompo-
nents strategy for application code development. The goal of
Agile Components is to enable the efficient development of
production-quality software by providing a well-defined, uni-
fying interface to a powerful set of component-based software.
Albanys approach improves code reuse by allowing common
”building blocks” to be used by many different problems, it
bypasses the complications of developing multi physics code
from scratch.

Performance portability is another challenge faced today
by code developers: code needs to be executed correctly and
be performant despite variation in the architecture, operat-
ing system, and software libraries. Albany uses the Kokkos
C++ library to address performance portability issue. Kokkos
benchmark results show portable performance across hardware
from major vendors [3]. In all cases Kokkos kernels show
performance very close to that obtained with vendor-tuned
library, while in some cases we even outperformed it.

The evidence to date from applications that have been built
upon the Albany code base is that it is straightforward to
rapidly develop sophisticated PDE codes with excellent multi-
level parallelism, performance portability, advanced discretiza-
tions, high performance linear solvers and preconditioners, a
wide range of nonlinear and transient solvers, and sophisti-
cated analysis algorithms, using the proposed methodology.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the US
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000. This paper is
crossreferenced at Sandia as SAND2015-5096 C.

REFERENCES

[1] A Salinger et al.,Albany: A Component-Based Partial Differential Equa-
tion Code Built on Trilinos, Sandia National Labs Technical Report,
SAND2013-8430J, 2013.

[2] M. A Heroux et al.,An overview of the Trilinos project., ACM Trans.
Math. Softw.31(3) (2005).

[3] H. Carter Edwards, Christian R. Trott and Daniel Sunderland, Kokkos:
Enabling manycore performance portability through polymorphic memory
access patterns, Journal of Parallel and Distributed Computing, 2014.

[4] K. Tate, Sustainable Software Development: An Agile Perspective,
Addison-Wesley Professional, 2005

[5] R. P. Pawlowski. 2011. http://trilinos.sandia.gov/packages/phalanx/.
(2011).

[6] A. Munshi (Ed.), TheOpenCLSpecification, KhronosOpenCLWorking
Group, 2009, version: 1.0, Document Revision:48.

[7] OpenMP Architecture Review Board.OpenMP Application Program
Interface. 2013.

[8] OpenACC-Standard.org:The OpenACC Application Programming Inter-
face, v2.0. 2013.

[9] IEEE Std 1003.1, 2004 Edition, ¡pthread.h¿, 2004.
[10] W. F. Spotz, T. M. Smith, I. Demeshko and J. A. Fike.Aeras: A

Next Generation Global Atmosphere Model, International Conference on
Computational Science (ICCS15), Reykjavik, Iceleand, 2015

http://trilinos.sandia.gov/packages/phalanx/

	I Introduction
	II Albany's software sustainability
	III Performance portability in Albany
	IV Conclusion
	References

