
A Roadmap for Sustainable Ecosystems of CSE Software

Roscoe A. Bartlett, Oak Ridge National Laboratory

06/26/2015

Introduction

The computational science & engineering (CSE)
community is constantly developing and improving
diverse algorithms and software for solving complex
simulation and analysis problems. The best
algorithms implemented as software packages by
different experts from many institutions must be
integrated into single executables to solve the most
challenging problems. For this to happen, the CSE
community must be able to affordably develop,
integrate, and deploy software built from an
ecosystem of these packages in a sustainable way
over many decades and many changes in computer
architectures (e.g. exascale). Some of the challenges
and proposed solutions are the focus here.

Consider a small ecosystem shown in Figure 1 which
includes six independently developed and released
packages A–F and four applications App1–App4 that
use different sets of them. Here, a Package is
defined as a piece of software that is released, built,
and installed as a single unit. Using stacks of
packages like this is difficult for many reasons: these
different packages can be released at different
schedules, releases can break backward compatibility
or introduce new bugs (sometimes subtly and
without warning), one or more packages can be
difficult to build from source on any given platform,
or support for a given package can suddenly
disappear. It is because of these challenges that the
CSE community has struggled to develop and reuse
such stacks of software packages. For example, it is
the challenges around a package dependency graph
about the size of the one in Figure 1 that motivated
the formation of the IDEAS Project [1].

A possible roadmap is outlined for how to achieve
these ecosystems in a sustainable way that builds on
experience that comes from development and
integration projects related to Trilinos [4], SIERRA
(SNL), CASL VERA [5] in many others over the
last 15+ years in the DOE labs.

A Roadmap for Sustainable
Ecosystems of CSE Software

App2 

App1 
App3 

App4 

A B 

C D 

E F 

Figure 1: Small ecosystem of packages and apps

There are four different parts to the challenge of
developing and maintaining these ecosystems of
packages and applications. For each challenge area,
past, on-going, and future work to address the issues
is mentioned.

1) Lifecycle and software quality of individual
packages: The needs of research and the needs of
customers with respect to the ecosystem must be
balanced. Also, CSE software that is too immature
cannot directly participate in a large ecosystem. To
address this, a lifecycle model for research-based
CSE software based on modern Lean/Agile software
engineering principles has been developed [6]. This
lifecycle model defines four different lifecycle
maturity levels: Exploratory (EP: primary
purpose is to explore alternative approaches),
Research Stable (RS: strong verification tests,
clean design and code base), Production Growth
(PG: improving input checking and error reporting,
better formal documentation, better regulated
backward compatibility with fewer incompatible
changes, increasingly better portability and
space/time performance , expanding usage in more
customer codes), and Production Maintenance
(PM: primary development includes mostly bug
fixes and performance tweaks). Legacy software can
be grandfathered in by adopting the Legacy
Software Change Algorithm [6]. Packages in the
PG and PM stages are most appropriate to directly
participate in larger ecosystems. However, lower
maturity packages (e.g. RS) can participate as well
as long as they are wrapped under higher maturity
packages. This lifecycle model is being further

1



refined as part of the IDEAS Project [1].

2) Sustainability of software packages: What
would happen if all support for a software package
in the ecosystem disappeared? Would downstream
customers or the CSE community be able to adapt?
In order to sustain an ecosystem of software
packages, one must be able to build all of the
non-standard software from source and the software
should have the properties of Self-Sustaining
Software [6]. That is, the package must have an
open-source license, be exceptionally well tested
(with strong automated tests), have clean structure
and code, have minimal controlled internal and
external dependencies, and all these properties must
apply recursively to upstream dependencies
(stopping at standards like C/C++ compilers, MPI,
etc.). Packages without these properties represent a
risk to the ecosystem.

3) Maintaining compatibility of packages in
the ecosystem: This is most difficult of the
challenges and the area where the current CSE
community is the most lacking. There are several
different models to maintain the integration between
different software packages ranging from continuous
integration (CI), to almost CI, to punctuated
upgrades against released versions [7]. While CI is
fast and efficient, it requires massive coordination
and is the least scalable. Alternatively, punctuated
upgrades against released versions is the most
scalable but presents great challenges in maintaining
compatible sets of released packages. The Semantic
Versioning Standard [2] was created to help
define the rules by which packages name their
releases X.Y.Z in a way that helps to determine
compatibility between different versions of the
software. Given this standard, the CSE community
can define processes and requirements for package
releases needed to sustain these ecosystems. For
example, there is a trade-off between how many
consecutive backward compatible releases a package
puts out and how many prior non-backward
compatible releases need to be supported. A
package that never breaks backward compatibility
needs only support the current release. However, a
package that breaks backward compatibility with
every release may need to support many prior
releases. For example, if all of the packages shown
in Figure 1 put out releases at the same cadence,
then if package A breaks backward compatibility
with every release, then the developers for package A

must support the current and prior two releases in
order to make the release of package F feasible. One
can define a number of processes and rules like this
based on simple analysis of the package dependency

graph. These processes and requirements are being
developed as part of the IDEAS Project [1].
4) Building a compatible set of packages for a
given application from source: Because CSE
packages tend to break backward compatibility often
and are very actively developed, it is not practical
(or scalable) to try to put out binary releases of
pre-built libraries using “package management”
systems like, for instance, apt and yup for Linux
distributions. The only scalable approach is to build
the needed packages from source for a specific set of
versions for a given set of application codes. The
popular approach of wrapping the heterogeneous
build systems (e.g. autotools, raw makefiles, raw
CMake) for different packages in a single build
driver presents many portability challenges. To
overcome this, for example, the ASC SIERRA
project threw away the native build systems for
their 30+ upstream packages and wrote uniform
build files with SIERRA itself and it proved to
massively improve the portability of SIERRA.
Another example is Trilinos, CASL VERA, and
other related projects which use CMake TriBITS [3]
to provide uniform builds for hundreds of packages
in different contexts. Work is under way to extend
the TriBITS into a more general meta-build system
that will scale to the largest imaginable ecosystems
of packages in the CSE community.

References

[1] Interoperable design of extreme-scale application
software (IDEAS).
https://ideas-productivity.org/.

[2] Semantic Versioning 2.0.0. http://semver.org/.
[3] TriBITS: Tribal Build, Integrate, and Test

System. http://tribits.org/.
[4] The Trilinos project. https://trilinos.org/.
[5] Virtual Environment for Reactor Applications

(VERA). http://www.casl.gov/VERA.shtml.
[6] R. A. Bartlett, Michael A. Heroux, and

James M. Willenbring. Overview of the tribits
lifecycle model: A lean/agile software lifecycle
model for research-based computational science
and engineering software. e-science, 2012 IEEE
8th International Conference on E-Science:1–8,
2012.

[7] R.A. Bartlett. Integration strategies for
computational science. In Software Engineering
for Computational Science and Engineering,
2009. SECSE ’09. ICSE Workshop on, pages 35
–42, 23-23 2009.


