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Progressive scales in scientific software

As physical resolution and discrete problem complexity
increases, demands on scientific software escalate!

1. Pilot scale (design and prototype of vision)

— rapid code changes and design abstractions

2. Miniscale (capability and feature addition)

— increased range of applicability of library/application use-cases, SQA

3. Macro scale (usability and scientific productivity)

— wide adoption, user support, scalable execution on large-scale machines

4. Distributed scale (sustainability and extensibility)

— large teams, coherent source management and review, portable
software, resource management

Vijay Mahadevan | Curse of scales in CS&E p



Sustaining software lifecycle

- Flexible abstractions

- Build management

- Configuration management
- Rapid TDD

- Static analysis

- High resolution capability
- Language interoperability
- Dependency management
- Profiling and optimization

Portabilit Flexible Capable valgrind
reine cppcheck
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- Distributed review process - Reproducibility
- Formalize release process ~ - Documentation
- Ease collaboration - Verification test suites
- Resource management - User group support
- Extend scope - Licensing policy
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Lessons from mature scientific software
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Lessons from mature scientific software
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— achieving distributed scale development requires rigorous software verification
and open access to developers

— maintaining and sustaining scientific software requires increasing resources
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