The curse of growing scales: from inception to

successful community-driven software development

Vijay Mahadevan Andrew Siegel

CSESSP Challenges, Oct 15-16 2015

Argonne

NATIONAL LABORATORY

Vijay Mahadevan | Curse of scales in CS&E 1

Progressive scales in scientific software

As physical resolution and discrete problem complexity
increases, demands on scientific software escalate!

1. Pilot scale (design and prototype of vision)

— rapid code changes and design abstractions

2. Miniscale (capability and feature addition)

— increased range of applicability of library/application use-cases, SQA

3. Macro scale (usability and scientific productivity)

— wide adoption, user support, scalable execution on large-scale machines

4. Distributed scale (sustainability and extensibility)

— large teams, coherent source management and review, portable
software, resource management

Vijay Mahadevan | Curse of scales in CS&E p

Sustaining software lifecycle

- Flexible abstractions

- Build management

- Configuration management
- Rapid TDD

- Static analysis

- High resolution capability
- Language interoperability
- Dependency management
- Profiling and optimization

Portabilit Flexible Capable valgrind
reine cppcheck
Documentation N Jenking e
unit Buildbot
Jtorials 7 ~ Git ROSE
Profiling Sustain Usable sithub gittebggagfgt
- Distributed review process - Reproducibility
- Formalize release process ~ - Documentation
- Ease collaboration - Verification test suites
- Resource management - User group support
- Extend scope - Licensing policy

Vijay Mahadevan | Curse of scales in CS&E 3

Lessons from mature scientific software

700

== Man-Years
600 B Developers

Data source: (www.openhub.net/)

w A 0 ONODOD
()
N

N

300

500

®

o

o= 1000
n 9
) 8
Q. 400 7
el 6
()

> 5
(]

= a
(e

o

@

0

&

S

7=,

Man-years invested (COCOMO Model)

200
100
9
8
7
6
100 5
4
3
0
& 1, 1y, 1 S A, . o s T, % 8
Sey, oy %p Oosgp R, R S/, s s o oy, . St
Q Qe ; *
“me, Scientific Packages (7 g,

Vijay Mahadevan | Curse of scales in CS&E 4

Lessons from mature scientific software

w » o

Data source: (www.openhub.net/)

Commits

XK. Estimated Cost

100M

Ui o N WY

w A oW
I

N

Number of commits

10M

Estimated Cost (COCOMO Model)

w B U oNW

N

100k
10k
9

8

7

Scientific Packages 0'77 b, .

al... IIII

&
/g €D/C MOO Sé\p /1404 5 M’O /C eC?/ L1y

S,
Woy,

— achieving distributed scale development requires rigorous software verification
and open access to developers

— maintaining and sustaining scientific software requires increasing resources

Vijay Mahadevan | Curse of scales in CS&E 5

Relevant and interesting references

Software Sustainability Institute (http://www.software.ac.uk)

2. Katz, D.S., etal. (2014) Summary of the First Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE1), Journal of Open Research
Software, 2: (1).

3. Senyard, A., Michlmayr, M. (2004) How to Have a Successful Free Software Project,
in Proceedings of Software Engineering Conference, Dec 2004.

4. Godfrey, M. W., Tu, Q. (2000) Evolution in Open Source Software: A Case Study, in
Proceedings of the International Conference on Software Maintenance (ICSM’00),
131-142.

5. Brooks, F.P. (1987) No Silver Bullet — essence and accident in software Engineering,
Computer, 20: (4), 10-19.

Software engineering for large scale systems (http://www1.rmit.edu.au/courses/041259)

Trajectory of a software engineer
https://michaelochurch.wordpress.com/2012/01/26/the-trajectory-of-a-software-engineer-and-where-
it-all-goes-wrong

Vijay Mahadevan | Curse of scales in CS&E 6

