
User-Extensible

Compiler

Toolchains for

Refactoring CSE

Software

Christos Kartsaklis

David E. Bernholdt

Dali Wang

15-16 October 2015, Washington DC

Computational Science & Engineering Software Sustainability
and Productivity Challenges (CSESSP Challenges)

CSE Challenges

• Compelling choice of targets

– Intel/AMD/ARM/POWER CPUs, NVIDIA/AMD/Intel Accelerators

– Different SIMD widths, core/accelerator counts, memory hierarchies,
numa domains, discreteness, offload APIs…

• Refactoring in computational kernels

– Changing the layout, slicing or duplicating data structures (accel offload)

– Manipulating deep loop nests, distributing the iteration space

– Move, extract, repackage, specialize, generalize & clone code

• Examples

– CLM: deep AoSoA.. (array of structures of arrays of …)

– Denovo: nD array dimension reordering

– XGC1: order-by data layouts (binning)

CSE Refactoring Streamlining

• CSE developer wants

– Transform sources with the least possible effort

– For exploring an optimization path & reusing portions of a code base

• Current methods require users to “normalize” code

– Stencil toolkits, polyhedral compiler-backed frameworks

– User needs to pre-process, isolate, cleanup or simplify code, fight with
compiler heuristics

• Need new compiler abstractions

– Defined and directed by the CSE developer & complementing the
compilation toolchain

• Software Engineering

– Mining for refactoring opportunities & reusing as much as possible in
this context

User-Extensible Compiler Toolchains

• Adding new analyses & transformations to an existing compiler

– Must leverage a mechanism for non compiler experts

• Position: compiler directives for CSE refactoring tasks

• CSE community accustomed to parallelization directive APIs

– OpenMP, StarSs, OpenACC, HPF, CMIC; GCC/ICC ivdep, unroll, …

• Other known uses

– User-level extensible directives (XDDML) & notifying the compiler of
patterns (EPOD)

• In our own HERCULES framework

– Forming code search queries from source code (HERCULES/PL) &
customizable manipulation of loop nests (HSLOT)

– Open64-derived & user-extensible compilers hcc & hf90

• CSE developer complementing various compiler phases in an
application-specific way

– Code-specific refactoring, compiler wrappers, etc.

Acknowledgements

• Work is supported by “IDEAS: Interoperable Design of Extreme-scale
Application Software” and is sponsored by the DOE Office of Science,
Offices of Advanced Scientific Computing Research (ASCR) and
Biological Environmental Sciences (BER).

• This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

