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CSE Challenges 

• Compelling choice of targets 

– Intel/AMD/ARM/POWER CPUs, NVIDIA/AMD/Intel Accelerators 

– Different SIMD widths, core/accelerator counts, memory hierarchies, 
numa domains, discreteness, offload APIs… 

• Refactoring in computational kernels  

– Changing the layout, slicing or duplicating data structures (accel offload) 

– Manipulating deep loop nests, distributing the iteration space  

– Move, extract, repackage, specialize, generalize & clone code 

• Examples 

– CLM: deep AoSoA.. (array of structures of arrays of …) 

– Denovo: nD array dimension reordering 

– XGC1: order-by data layouts (binning)  



CSE Refactoring Streamlining 

• CSE developer wants 

– Transform sources with the least possible effort 

– For exploring an optimization path & reusing portions of a code base 

• Current methods require users to “normalize” code 

– Stencil toolkits, polyhedral compiler-backed frameworks 

– User needs to pre-process, isolate, cleanup or simplify code, fight with 
compiler heuristics  

• Need new compiler abstractions 

– Defined and directed by the CSE developer & complementing the 
compilation toolchain 

• Software Engineering 

– Mining for refactoring opportunities & reusing as much as possible in 
this context 



User-Extensible Compiler Toolchains 

• Adding new analyses & transformations to an existing compiler  

– Must leverage a mechanism for non compiler experts 

• Position: compiler directives for CSE refactoring tasks 

• CSE community accustomed to parallelization directive APIs 

– OpenMP, StarSs, OpenACC, HPF, CMIC; GCC/ICC ivdep, unroll, …  

• Other known uses 

– User-level extensible directives (XDDML) & notifying the compiler of 
patterns (EPOD) 

• In our own HERCULES framework 

– Forming code search queries from source code (HERCULES/PL) & 
customizable manipulation of loop nests (HSLOT) 

– Open64-derived & user-extensible compilers hcc & hf90 

 

• CSE developer complementing various compiler phases in an 
application-specific way 

– Code-specific refactoring, compiler wrappers, etc.  
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