
LAWRENCE BERKELEY NATIONAL LABORATORY

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

Analysis and Optimization of
Complex Software Systems

1

Costin Iancu, Wim Lavrijsen

Lawrence Berkeley National Laboratory

Koushik Sen

University of California at Berkeley

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

LAWRENCE BERKELEY NATIONAL LABORATORY

As every program becomes parallel,
conventional compilers address only parts of

software development concerns. We need
novel approaches able to handle complex

modular parallelism.

Our conjecture: complex runtime parallel
behavior is best handled by dynamic program

analysis

2

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

LAWRENCE BERKELEY NATIONAL LABORATORY

Programming Complex Systems

v  High Level Languages (HLL), application frameworks are pervasive
§  Domain Specific Language: e.g. Tensors (TCE) in HPC, Pig Latin in

commercial
§  Frameworks. e.g. Trilinos or Hadoop
§  HLL proper: Scala, Python, Matlab, R

v  No good optimizing compiler/SDK exists for (parallel) HL concepts
§  Significant engineering challenges
§  Static compilation is inherently limited when dealing with complex dynamic

behavior
§  Sematic gap between HL and hardware/system

3

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

LAWRENCE BERKELEY NATIONAL LABORATORY

Dynamic Analysis in Practice

v  Dynamic Analysis (DA): run ->learn->transform->check->repeat

v  Many success stories using Dynamic Analysis
§  Program verification, testing, bug detection
§  Speculative synchronization and parallelism transformations
§  Runtime code optimization (JIT) (e.g. javascript, PyPy)

v  DA handles multi-language, multi-paradigm, multi-domain
applications
§  Relatively short development cycle for powerful analyses
§  Easy to specialize for the problem domain/infrastructure

v  DA adds runtime overhead, sometimes prohibitive
§  Need to monitor program execution and infer behavior

4

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

LAWRENCE BERKELEY NATIONAL LABORATORY

Static vs Dynamic

5

Static Dynamic
Soundness Soundy (?) Input Specific - TBD

Precision Conservative, many false
positives

Precise

Coverage Whole program Executed path

Usage Automated Guided most likely

Language target Static languages, fixed syntax Static and Dynamic
languages, extensible

Analyses Type Language specific, domain
independent

Language independent, can
be domain dependent

Domains Best for single core code
generation

Optimizations for
concurrency, testing,
verification…. TBD

COMPUTER LANGUAGES & SYSTEMS SOFTWARE GROUP

LAWRENCE BERKELEY NATIONAL LABORATORY

Hybrid Analyses

v  Use compiler as instrumenter to lower runtime overhead
§  Static analysis to guide the dynamic analysis

v  Provide composable domain/language independent building
blocks
§  E.g. event hooks, annotation, and instrumentation

v  Provide for domain/language specialization

v  Provide “generic” canonical analyses that can be composed
§  E.g. data race detection, order analysis

v  Provide presentation layers: translate machine/runtime info
into English – needs focus

6

