
The Need for a Common Concurrency Language

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer

Department of Computer and Information Science
University of Delaware

Mathematics and Computer Science Division
Argonne National Laboratory

Department of Computer Science and Engineering
University of Nebraska - Lincoln

CSESSP Workshop, October 2015

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

V&V of Concurrent Programs

Validating concurrent programs is extremely challenging

the oracle problem (i.e., what should the program compute?)

the non-determinism problem (i.e., exponential scheduling space)

The 2000s saw formal verification as a means to address these ...

e.g., Microsoft’s SLAM, NASA’s JPF, CMU’s CBMC

on relatively small and straightforward programs

Modern HPC codes are large, multi-lingual, and architecturally complex

10k-1000k SLOC (e.g., AMG2013 75k, PetSC 500k SLOC))

concurrency dialects (e.g., AMG2013: OpenMP+MPI, PETSc:
MPI+CUDA+Pthreads+...)

built from reusable components

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

V&V of Concurrent Programs

Validating concurrent programs is extremely challenging

the oracle problem (i.e., what should the program compute?)

the non-determinism problem (i.e., exponential scheduling space)

The 2000s saw formal verification as a means to address these ...

e.g., Microsoft’s SLAM, NASA’s JPF, CMU’s CBMC

on relatively small and straightforward programs

Modern HPC codes are large, multi-lingual, and architecturally complex

10k-1000k SLOC (e.g., AMG2013 75k, PetSC 500k SLOC))

concurrency dialects (e.g., AMG2013: OpenMP+MPI, PETSc:
MPI+CUDA+Pthreads+...)

built from reusable components

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

V&V of Modern HPC Codes

The development of a verification tool requires enormous effort

for a single source language (e.g., C)

for a single specification language (e.g., LTL)

for a single model of concurrency (e.g., Pthreads)

What hope is there for programs like AMG2013 and PETSc?

We believe that a common concurrency language can be defined

to which source languages can be translated (e.g., C, Fortran)

in which rich specifications can be encoded (e.g., contracts)

in which multiple concurrency models can be expressed (e.g., MPI,
OpenMP, Pthreads, CUDA)

... to support verification rather than execution.

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

V&V of Modern HPC Codes

The development of a verification tool requires enormous effort

for a single source language (e.g., C)

for a single specification language (e.g., LTL)

for a single model of concurrency (e.g., Pthreads)

What hope is there for programs like AMG2013 and PETSc?

We believe that a common concurrency language can be defined

to which source languages can be translated (e.g., C, Fortran)

in which rich specifications can be encoded (e.g., contracts)

in which multiple concurrency models can be expressed (e.g., MPI,
OpenMP, Pthreads, CUDA)

... to support verification rather than execution.

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

V&V of Modern HPC Codes

The development of a verification tool requires enormous effort

for a single source language (e.g., C)

for a single specification language (e.g., LTL)

for a single model of concurrency (e.g., Pthreads)

What hope is there for programs like AMG2013 and PETSc?

We believe that a common concurrency language can be defined

to which source languages can be translated (e.g., C, Fortran)

in which rich specifications can be encoded (e.g., contracts)

in which multiple concurrency models can be expressed (e.g., MPI,
OpenMP, Pthreads, CUDA)

... to support verification rather than execution.

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

The Concurrency Intermediate Verification Language

A variant of C that provides a rich set of additional primitives, e.g., nested
functions, scoped memory, concurrency, specs, ...

0:Root
f1,f2,main

1:f1
n

3:f3
i

2:f2
n,s,p2,p3

f3

4 5

function scope name

function decls

variable decls

0:0

1:1
n:6

4:4 6:5

7:6
p1:p1

p2

p0

p3

int f1(int n) { ... }
void f2(int n) {
 int s=0;
 void f3(int i) {
 if (i%2==0) { s+=f1(i); }

 else { s+=3*i+1; }
 }
 $proc p2 = $spawn f3(n);
 $proc p3 = $spawn f3(n+1);
 $wait(p2); $wait(p3);

}
void main() {
 $proc p1 = $spawn f2(5);
 $wait(p1);
}

0
1
2

3
4

5

6

6:main
p1

parent edge
2:2

n:5,s:0
p2:p2
p3:p3

3:3
i:6

5:3
i:5

p1

call stack

dyscope corresponding
static scope

parent edge

dyscope ID

static scope IDstatic scope

main

f2

f3

f3

f1

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

CIVL is supported by a verification framework

Model builder + Verifier

Parser + Transformers

ABC
parser

ABC
AST

source
C or CIVL-
C with MPI,

CUDA,
OpenMP,
Pthreads

CIVL
verifier

CIVL
model builderCIVL model

CIVL
transformers

CUDA→CIVL-C
OpenMP→CIVL-C
Pthreads→CIVL-C
MPI→CIVL-C

CIVL
AST

log file
- prioritized
summary of
violations

stdout
- Yes / No
- statistics
(time,
memory, ...)

trace files
- each violation

SARL

Available as open source from: http://vsl.cis.udel.edu/civl

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

http://vsl.cis.udel.edu/civl

What does CIVL buy you?

Checks for many properties

generic: array bounds, memory leaks, null deref., deadlock, ...

dialect-specific: OpenMP data-races, MPI collective order, ...

source
spec

source
impl

Parser +
Transformers

CIVL AST
spec

CIVL AST
impl

Compare
Combiner

CIVL AST
spec-impl

Parser +
Transformers

Implements state-of-the-art state-matching and storage, POR, SMT solving, and
sequentialization techniques for efficiency; faster than the best monolithic tools

Qualifies its error reports (e.g., PROVABLE)

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

What does CIVL buy you?

Checks for many properties

generic: array bounds, memory leaks, null deref., deadlock, ...

dialect-specific: OpenMP data-races, MPI collective order, ...

source
spec

source
impl

Parser +
Transformers

CIVL AST
spec

CIVL AST
impl

Compare
Combiner

CIVL AST
spec-impl

Parser +
Transformers

Implements state-of-the-art state-matching and storage, POR, SMT solving, and
sequentialization techniques for efficiency; faster than the best monolithic tools

Qualifies its error reports (e.g., PROVABLE)

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

What does CIVL buy you?

Checks for many properties

generic: array bounds, memory leaks, null deref., deadlock, ...

dialect-specific: OpenMP data-races, MPI collective order, ...

source
spec

source
impl

Parser +
Transformers

CIVL AST
spec

CIVL AST
impl

Compare
Combiner

CIVL AST
spec-impl

Parser +
Transformers

Implements state-of-the-art state-matching and storage, POR, SMT solving, and
sequentialization techniques for efficiency; faster than the best monolithic tools

Qualifies its error reports (e.g., PROVABLE)

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

What does CIVL buy you?

Checks for many properties

generic: array bounds, memory leaks, null deref., deadlock, ...

dialect-specific: OpenMP data-races, MPI collective order, ...

source
spec

source
impl

Parser +
Transformers

CIVL AST
spec

CIVL AST
impl

Compare
Combiner

CIVL AST
spec-impl

Parser +
Transformers

Implements state-of-the-art state-matching and storage, POR, SMT solving, and
sequentialization techniques for efficiency; faster than the best monolithic tools

Qualifies its error reports (e.g., PROVABLE)

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

Don’t ask us ...

Subject: CIVL and automatic differentiation: uploaded test cases

Date: August 11, 2015 at 4:18:17 PM CDT

Hi Steve (and whoever else is interested),

...

I used CIVL to prove that

- a Conjugate Gradient solver is an exact solver for a n*n

matrix if at least n iterations are performed

- a hand-coded gradient implementation matches the

Tapenade-generated gradients

- finite-difference gradients are exact for a linear function

...

In general I am very pleased with CIVL, it is much more powerful

than I thought it would be. In particular, CIVL was able to verify

that a call to the CG solver is equivalent to applying the

hand-coded inverse matrix, a property that is really not obvious

from just looking at the source code.

...

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

The Need for a Common Concurrency Language

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer

Department of Computer and Information Science
University of Delaware

Mathematics and Computer Science Division
Argonne National Laboratory

Department of Computer Science and Engineering
University of Nebraska - Lincoln

CSESSP Workshop, October 2015

For more information:

“CIVL: The Concurrency Intermediate Verification Language” at SC’15

“CIVL: Formal Verification of Parallel Programs” at ASE’15

http://vsl.cis.udel.edu/civl

Stephen F. Siegel, Manchun Zheng, Paul Hovland, Matthew B. Dwyer CIVL

http://vsl.cis.udel.edu/civl

