
Opportuni)es	  in	  Computa)onal	  
Science	  to	  Advance	  So6ware	  

Engineering	  	  
	  

Devin	  Ma<hews	  
Don	  Batory	  
Bryan	  Marker	  

Robert	  van	  de	  Geijn	  



Scien)fic	  Solu)ons	  to	  CSESSP	  
Challenges	  

•  So6ware	  sustainability	  and	  produc)vity	  has	  many	  
facets,	  but	  we	  should	  recognize	  the	  technical	  and	  
scien*fic	  solu)ons	  to	  these	  challenges	  (in	  
computa)onal	  and	  computer	  sciences).	  

•  Scien)fic	  solu)ons	  in	  CSE	  can	  benefit	  real-‐world	  
domain	  applica*ons.	  Both	  systems	  and	  algorithms	  are	  
equally	  important.	  

•  Principles	  of	  automa*on	  apply	  to	  both	  computa)onal	  
and	  non-‐computa)onal	  problems.	  



An	  Example:	  DxTer	  
•  Expert	  knowledge	  is	  encoded	  as	  transforma)ons	  of	  algorithms,	  

represented	  as	  dataflow	  graphs.	  

•  Performance	  is	  modeled	  (again	  using	  expert	  knowledge)	  or	  
measured.	  

•  The	  op*mal	  implementa*on	  within	  the	  knowledge	  space	  can	  be	  
obtained.	  All	  implementa)ons	  are	  Correct-‐by-‐Construc*on	  (CxC).	  

	  	  
	  

m can be quite large. Hence, exploring the Cartesian product of the implemen-
tations of comm0 and comm1 is often infeasible in practice.

Fortunately, there are many situations in which we can explore the imple-
mentations of di↵erent subgraphs independently, thereby generating n+m rather
than n⇥m implementations. For example, in Figure 4, assuming A 6= B (and that
the rewrite rules in the knowledge base satisfy a certain technical criterion), it is
safe to explore comm0 and comm1 independently without losing our optimality
guarantee. Similarly, if no rewrite rule applies to a combination of communica-
tion and computation components, implementations of any commi and compj
can again be explored separately. We refer to the independent exploration of
two di↵erent parts of the same graph as partitioning .

3.2.1 Partitioned Dataflow Graphs

We henceforth represent programs as partitioned dataflow graphs (PDG). A
PDG (P,E) is a dataflow graph that contains vertices, denoted P, that are
partitioned sets (PSets) representing possible implementations of some specifi-
cation. One can think of a PSet as a collection of dataflow graphs all of which
implement the same functionality. Edges E in the PDG represent dataflow re-
lations between PSets.

V

Wfoo

bar baz Y

Figure 5: An example PDG.

Figure 5 shows an example PDG where dotted rectangles represent PSets.
Inside a dotted rectangle is the specification graph of that PSet. Here, inter-
faces foo, bar, and baz belong to three di↵erent PSets. The “boxes” on the
boundary of PSets are referred to as tunnels and allow a PSet to act like a single
node by connecting the components outside the PSet to those within. Another
important point about PDGs is that they can be hierarchical. In other words,
just like procedures in code can call other procedures, a PSet in a PDG can
contain other PDGs nested inside it.

3.2.2 Su�cient Conditions for Partitioning

Given a PDG, we are interested in the conditions under which two PSets inside
this PDG can be explored independently. For this purpose, we first define weakly
connected dataflow graphs and then local dataflow dependence:

7

code generation has become a popular alternative for alleviating the burden of
developing high-performance SCAs [2, 4, 8, 29, 41, 43, 44].

Rewrite rules

Component types

DxTer

Program Specification

Optimal 
Implementation

Cost estimates

Figure 1: DxTer’s input and output.

This paper presents the program generation engine underlying DxTer , a
tool for generating high-performance, domain-specific programs such as SCAs.
As shown in Figure 1, DxTer allows experts to rigorously encode their domain-
specific expertise in the form of a knowledge base comprised of component types,
rewrite rules, and a cost model . Component types define domain-specific com-
putations, and rewrite rules define equivalences between dataflow graphs of these
components. In addition, a cost model estimates the runtime of components as
a function of their input.

Once an expert creates a knowledge base BD for a domain D, non-experts can
use DxTer to generate high-performance programs in domain D. Specifically, a
user only needs to provide a high-level specification S of the desired program in
the form of a dataflow graph, a directed acyclic multigraph (DAG) whose nodes
are components and whose edges represent input-output relations [34]. Given
a specification S, DxTer explores the space of possible implementations of S
and outputs an optimal implementation of S with respect to its knowledge base
BD. Thus, BD is reusable across user specifications. Further, since DxTer’s
search algorithm is domain-agnostic, DxTer can be used to generate programs
in di↵erent domains by providing an appropriate knowledge base.

The key challenge underlying DxTer is to e�ciently search the space of all
possible implementations for a given specification. In practice, since the space
of all implementations of a program is huge (e.g., 1016), a naive code gener-
ation algorithm that explicitly enumerates all implementation options simply
does not scale. To avoid this, DxTer implicitly represents the space of possible
implementations using partitioned dataflow graphs (PDGs) and identifies inde-
pendent subgraphs to decompose the search. Our novel PDG-based algorithm
dramatically reduces the search space without sacrificing optimality and allows
DxTer to generate high-performance code in a matter of seconds.

To demonstrate the usefulness and practicality of DxTer, we use it to gen-
erate high-performance SCAs that are based on tensor contractions. Tensor
contractions, which are generalizations of matrix multiplication, have numerous
applications in scientific computing, including in quantum chemistry [26], high-
energy physics [28], and fluid mechanics [24]. We show that programs generated
by DxTer are competitive with (and sometimes superior to) a state-of-the-art

2



An	  Example:	  DxTer	  
W bm

je = (2wbm
je � xbm

ej ) +
X

f

(2rbmfe � rbmef )tfj �
X

n

(2unm
je � umn

je )tbn

+
X

fn

(2vfenm � vfemn)(T
bf
jn +

1

2
T bf
nj � ⌧ bfnj )

Xbm
ej = xbm

ej +
X

f

rbmef tfj �
X

n

umn
je tbn �

X

fn

vfemn(⌧
bf
nj �

1

2
T bf
nj )

Umn
ie = umn

ie +
X

f

vfemnt
f
i

Qmn
ij = qmn

ij + (1 + Pmi
nj )

X

e

umn
ie tej +

X

ef

vefmn⌧
ef
ij

P ji
mb = uji

mb +
X

ef

rbmef ⌧efij +
X

e

wbm
ie tej +

X

e

xbm
ej tei

Hm
e =

X

fn

(2vefmn � vefnm)tfn

F a
e = �

X

m

Hm
e tam +

X

fm

(2ramef � ramfe )tfm �
X

fmn

(2vefmn � vefnm)T af
mn

Gm
i =

X

e

Hm
e tei +

X

en

(2umn
ie � unm

ie )ten +
X

efn

(2vefmn � vefnm)T ef
in

zai = �
X

m

Gm
i tam �

X

emn

(2Umn
ie � Unm

ie )T ae
mn +

X

em

(2wam
ie � xam

ei )tem

+
X

em

(2T ae
im � T ae

mi)H
m
e +

X

efm

(2ramef � ramfe )⌧efim

Zab
ij = vabij +

X

mn

Qmn
ij ⌧abmn +

X

ef

yabef⌧
ef
ij + (1 + Pai

bj )

(
X

e

rejabt
e
i

�
X

m

P ij
mbt

a
m +

X

e

F a
e T

eb
ij �

X

m

Gm
i T ab

mj +
1

2

X

em

W bm
je (2T ae

im � T ae
mi)

�(
1

2
+ Pi

j)
X

em

Xbm
ej T ae

mi

)

Figure 5.1: Equations for a single iteration of the spin-adapted CCSD method based
on the formulation from Scuseria, Scheiner, Lee, Rice, and Schaefer [76]. Following
the notation in [76], both superscripts and subscripts of each tensor are used to
represent labels assigned to modes (under some order). This notation di↵ers from
what is used in this dissertation. Each summation indicates a contraction.

104

A	  real-‐life	  example	  
from	  
computa)onal	  
chemistry:	  CCSD	  



An	  Example:	  DxTer	  
•  DxTer	  can	  generate	  

high-‐performance	  
implementa*ons	  of	  
real	  domain-‐specific	  
applica*ons	  (DSAs).	  

•  Automated	  
implementa*ons	  can	  
meet	  or	  exceed	  the	  
performance	  of	  
expert-‐wri?en	  code.	  

•  Op*mality	  and	  
Correctness-‐by-‐
Construc*on	  are	  
obtainable	  in	  the	  real	  
world.	  

Our approach captures and encodes meta-decisions of
DLA and tensor software development as graph rewrite rules
[1]. Given a simple abstract dataflow graph of a computation
in terms of standard CSE user-callable primitives, we apply
rewrites to transform an input graph into a complex dataflow
graph of low-level DLA, tensor, and communication soft-
ware primitives. The transformations that we perform are
automated and are isomorphic to decisions made by experts.

A simple concrete example from DLA is Hermitian ma-
trix multiplication. It is a user-callable primitive in the DLA
universe. Its dataflow graph G is elementary: given three ma-
trices as input, Hemm computes a sum of their multiplication:

Figure 1. An Abstract Hermitian Matrix Multiplication
Dataflow Graph.

Our tool, DxTer, with a rule base transforms this elementary
graph into a complex dataflow graph G0 containing only
low-level primitive operations whose architecture-specific
implementations are given to us. We can map this computed
graph to code yielding a high-performance implementation
of the Hemm operation on a particular platform/architecture.

DxTer captures insights of domain-experts by using cost-
functions to estimate the efficiency of architecture-primitive
operations. Given G0, we know how to estimate its efficiency
knowing the efficiency and sequence of primitives it calls.

DxTer goes further: there are colossal numbers of com-
plex dataflow graphs to which G can be mapped. In seconds,
DxTer quickly finds the graph G0 that is provably optimal [5].
G0 represents an architecture-optimized implementation of
G.

A fundamental property of our approach is correct-by-

construction (CxC) [3]: if the initial graph is correct and each
rewrite is correct, the result is correct. This means that we
can build each graph in a derivation and verify/test that it is
correct. We return to this property in the last section.

The input graphs to DxTer can be nontrivial. The Coupled

Cluster Single Double (CCSD) is a commonly used method
in quantum computational chemistry [4] that strikes a bal-
ance between communication cost and accuracy. It is a nu-
merical, iterative method utilizing a set of equations to give
an accurate reproduction of experimental results on electron
correlation for molecules. We partition CCSD’s specification
into 11 dataflow graphs containing 2-15 nodes each. DxTer
searches a space of (1016) solution graphs of hundreds of
nodes and does so in seconds to find a solution that is 40%
faster and can handle problems 50% larger than an exist-
ing high-performance tensor library [6]. Figure 2 shows the
performance of DxTer-generated code for CCSD on a Blue-
Gene/Q architecture [5].

Problem size (n
o
)

10 15 20 25 30 35 40 45 50 55 60

P
e

rf
o

rm
a

n
ce

 (
G

F
L

O
P

S
)

0

2000

4000

6000

8000

10000

12000

Performance of Full CCSD

DxTer-Generated
CTF

Figure 2. Performance of a single iteration of CCSD on
4,096 cores with one-quarter of peak performance at the top.

4. Closing Thoughts
The libraries that we have targeted are a small, but impor-
tant, sample of the CSE software universe. We achieved
sustainability in our CSE software development process by
mechanizing its “software development function” D(. . .).
By altering parameters to D we not only leverage critical
meta-knowledge to produce new libraries targeted to differ-
ent architectures, but we do so faster, cheaper, and better via
automation than can be performed manually. We therefore
scale critical CSE domain-expertise from a few extraordi-
nary individuals to CSE masses. Our work takes effort, not
something unreasonable but comparable to if not less than
what is done today manually for just one D(. . .) instantia-
tion.

CxC used to be a Grand Challenge in SE [3]; SE re-
searchers gave up because it was too hard. They didn’t have
the right combination of ideas and examples to convince oth-
ers. We have both now. We teach these ideas to our under-
graduates [1], as they are not specific to CSE. With further
work on CSE applications, we will have more evidence to
argue that automation should be main-stream SE paradigm
for a sustainable software development process.

Acknowledgements. We gratefully acknowledge support
for this work by NSF grant CCF-1212683.

References
[1] D. Batory, R. Goncalves, B. Marker, and J. Siegmund. Dark

knowledge and graph grammars in automated software design.
In Software Language Engineering (SLE). 2013.

[2] I. D. Baxter. Design Maintenance Systems. CACM, April 1992.

[3] C. Green et al. Report on a knowledge-based software assistant.
Kestrel Institute Technical Report KES.U.83.2, 1983.

[4] T. J. Lee and J. E. Rice. An efficient closed-shell singles
and doubles coupled-cluster method. Chemical physics letters,
150(6):406–415, 1988.

[5] B. Marker et al. Dxter: An extensible tool for optimal dataflow
program generation. Technical Report TR-15-03, Dept of
Comp. Sci. at the U. of Texas at Austin, 2015.

2 2015/9/14



References	  

h<p://shpc.ices.utexas.edu/publica)ons.html	  

Our approach captures and encodes meta-decisions of
DLA and tensor software development as graph rewrite rules
[1]. Given a simple abstract dataflow graph of a computation
in terms of standard CSE user-callable primitives, we apply
rewrites to transform an input graph into a complex dataflow
graph of low-level DLA, tensor, and communication soft-
ware primitives. The transformations that we perform are
automated and are isomorphic to decisions made by experts.

A simple concrete example from DLA is Hermitian ma-
trix multiplication. It is a user-callable primitive in the DLA
universe. Its dataflow graph G is elementary: given three ma-
trices as input, Hemm computes a sum of their multiplication:

Figure 1. An Abstract Hermitian Matrix Multiplication
Dataflow Graph.

Our tool, DxTer, with a rule base transforms this elementary
graph into a complex dataflow graph G0 containing only
low-level primitive operations whose architecture-specific
implementations are given to us. We can map this computed
graph to code yielding a high-performance implementation
of the Hemm operation on a particular platform/architecture.

DxTer captures insights of domain-experts by using cost-
functions to estimate the efficiency of architecture-primitive
operations. Given G0, we know how to estimate its efficiency
knowing the efficiency and sequence of primitives it calls.

DxTer goes further: there are colossal numbers of com-
plex dataflow graphs to which G can be mapped. In seconds,
DxTer quickly finds the graph G0 that is provably optimal [5].
G0 represents an architecture-optimized implementation of
G.

A fundamental property of our approach is correct-by-

construction (CxC) [3]: if the initial graph is correct and each
rewrite is correct, the result is correct. This means that we
can build each graph in a derivation and verify/test that it is
correct. We return to this property in the last section.

The input graphs to DxTer can be nontrivial. The Coupled

Cluster Single Double (CCSD) is a commonly used method
in quantum computational chemistry [4] that strikes a bal-
ance between communication cost and accuracy. It is a nu-
merical, iterative method utilizing a set of equations to give
an accurate reproduction of experimental results on electron
correlation for molecules. We partition CCSD’s specification
into 11 dataflow graphs containing 2-15 nodes each. DxTer
searches a space of (1016) solution graphs of hundreds of
nodes and does so in seconds to find a solution that is 40%
faster and can handle problems 50% larger than an exist-
ing high-performance tensor library [6]. Figure 2 shows the
performance of DxTer-generated code for CCSD on a Blue-
Gene/Q architecture [5].

Problem size (n
o
)

10 15 20 25 30 35 40 45 50 55 60

P
e
rf

o
rm

a
n
ce

 (
G

F
L
O

P
S

)

0

2000

4000

6000

8000

10000

12000

Performance of Full CCSD

DxTer-Generated
CTF

Figure 2. Performance of a single iteration of CCSD on
4,096 cores with one-quarter of peak performance at the top.

4. Closing Thoughts
The libraries that we have targeted are a small, but impor-
tant, sample of the CSE software universe. We achieved
sustainability in our CSE software development process by
mechanizing its “software development function” D(. . .).
By altering parameters to D we not only leverage critical
meta-knowledge to produce new libraries targeted to differ-
ent architectures, but we do so faster, cheaper, and better via
automation than can be performed manually. We therefore
scale critical CSE domain-expertise from a few extraordi-
nary individuals to CSE masses. Our work takes effort, not
something unreasonable but comparable to if not less than
what is done today manually for just one D(. . .) instantia-
tion.

CxC used to be a Grand Challenge in SE [3]; SE re-
searchers gave up because it was too hard. They didn’t have
the right combination of ideas and examples to convince oth-
ers. We have both now. We teach these ideas to our under-
graduates [1], as they are not specific to CSE. With further
work on CSE applications, we will have more evidence to
argue that automation should be main-stream SE paradigm
for a sustainable software development process.

Acknowledgements. We gratefully acknowledge support
for this work by NSF grant CCF-1212683.

References
[1] D. Batory, R. Goncalves, B. Marker, and J. Siegmund. Dark

knowledge and graph grammars in automated software design.
In Software Language Engineering (SLE). 2013.

[2] I. D. Baxter. Design Maintenance Systems. CACM, April 1992.

[3] C. Green et al. Report on a knowledge-based software assistant.
Kestrel Institute Technical Report KES.U.83.2, 1983.

[4] T. J. Lee and J. E. Rice. An efficient closed-shell singles
and doubles coupled-cluster method. Chemical physics letters,
150(6):406–415, 1988.

[5] B. Marker et al. Dxter: An extensible tool for optimal dataflow
program generation. Technical Report TR-15-03, Dept of
Comp. Sci. at the U. of Texas at Austin, 2015.

2 2015/9/14

[6] E. Solomonik et al. A massively parallel tensor contraction
framework for coupled-cluster computations. Journal of Paral-

lel and Distributed Computing, 74(12):3176–3190, Dec 2014.

3 2015/9/14

DxTer	  

CTF	  

CCSD	  

CxC	  

Knowledge	  as	  program	  
transforma)ons	  


