
G-Measuring Software
Productivity & Performance

Lead: Lois Curfman McInnes
Presenter: David Bernholdt, Colin Venters

Writers: Irina Demeshko, Dan Ibanez

Link to workshop Google docs area: http://tinyurl.com/csessp2015
Workshop agenda: http://www.orau.gov/csessp2015/agenda.htm

http://tinyurl.com/csessp2015
http://www.orau.gov/csessp2015/agenda.htm

Contributors

● Lois Curfman McInnes, ANL
● David E. Bernholdt, ORNL
● Ross Bartlett, ORNL
● Thomas Sterling, IU
● Kosta Damevski, VCU
● Rajiv Ramanath, NSF
● Cindy Rubio-Gonzalez, UC Davis
● Frank Löffler, Louisiana State University
● Irina Demeshko, SNL
● Dan Ibanez, RPI
● Colin Venters, Huddersfield
● Jeff Vetter, ORNL
● Costin Iancu, LBNL
● Karen Tomko, OSC
● Ram Sriram, NIST
● Tom Clune, NASA GSFC

● Ahmed Taha, NCSA
● Will Schroeder, Kitware
● Ronald Boisvert, NIST
● Sartaj Sahni, U Florida

[Add your name,
institution here.]

Charge:
Examine how metrics, benchmarks and standards can
be used to measure the effectiveness of productivity,
performance, and sustainability goals for CSE software.

Starter questions:
● Do we have effective metrics & benchmarks to measure the performance,

productivity, and reliability of complex computational science software?
● What impact do emerging and rapidly changing parallel and heterogeneous

architectures have on long-term software sustainability?
● How can productivity and performance metrics be practically defined and

applied for CSE software efforts?
● What role can funding agencies play in fostering efforts?
● Do we have effective mechanisms for software technology transfer from

national lab and academia to industry?

Software Productivity and Scientific Discovery

Software productivity is a key
component of overall scientific
productivity. Scientific productivity can
be considered an overall measure of
quality of the complete process of
achieving mission-driven science results.
Scientific productivity includes
software productivity (effort, time, and
cost for software development,
maintenance, and support), execution-
time productivity (efficiency, time, and
cost for running scientific workloads),
workflow and analysis productivity
(effort, time, and cost for the overall
cycle of simulation and analysis), and
the value of computational output in
terms of grand challenge scientific
discovery.

Scientific Productivity: Draft definition, from DOE
Workshop Report: Software Productivity for Extreme-
Scale Science, Jan 2014, see http://www.orau.
gov/swproductivity2014/reference.htm

http://www.orau.gov/swproductivity2014/reference.htm
http://www.orau.gov/swproductivity2014/reference.htm
http://www.orau.gov/swproductivity2014/reference.htm

Sustainability

Notes from Breakout A: Sustainability: “Preserving the function of a system
over a defined timespan.”
● Affordable, maintainable over many decades
● Can be extended and maintained by developers other than the initial

developers
● Can be refactored at reasonable cost for changes in programming models,

architectures, etc.
● Overlap with reproducibility and verification
● Maintaining the ability to satisfy growing requirements
● Abstraction and API to adapt with hardware changes (performance portability)
● Extensibility for new feature regimes easily (sustain and improve productivity)
● Library vs application concerns for sustainability

Sustainability: a composite, first-class, non-functional requirement (NFR)
that is a measure of a system’s maintainability and extensibility.
Domain specific: Efficiency (energy and cost), interoperability, portability, reusability, scalability,
and usability.

Why Do We Need Metrics?

● Facilities application of scientific method (or engineering analysis) to software
development

○ Need metrics that will change in response, in timely fashion
○ Need to know how sensitive metric is to what you’re trying to change

● Help identify SWE techniques/approaches that are useful
● Changes to SW development methods may have unintended consequences
● Our space is productivity, performance, and sustainability

○ Performance metrics are fairly well understood
○ There are often trade-offs among these
○ We don’t necessarily understand the space, nor how to optimize within it

● (Nearly) all metrics can eventually be equated to $
○ Value of scientific output may be challenging
○ Some things cannot be done even with an infinite budget

Do we have effective metrics and benchmarks to measure the performance,
productivity, and reliability of complex computational science software?

● Metrics need to account for human
costs (labor, etc.), system effectiveness
(HPC), and value of results

○ We don’t really have a good handle on
any of these.

● In general, no
○ Performance fairly well documented

■ Are they really metrics?
■ But they don’t meet Nyquist criteria

● LOC is one of the few widely used
productivity metrics

○ That’s not scientific productivity
○ LOC inversely proportional to sustainability

● Lifetime of codes is one measure of
sustainability

○ Requires $ investment
○ May be trade offs with technological

advancement of the code
○ Risk is often a consideration

● Cyclomatic complexity
● (Software) features
● “Velocity” (Agile)
● Human studies
● Operational vs impact metrics

○ Operational = lines of code, etc.
○ Impact metrics = scientific impact, long

time scale (problematic as a guide to
change)

● Indicators vs metrics
○ Relationship but not strictly defined

●

Need metrics for all phases of CSE software: need to
survey current metrics, identify gaps, opportunities

● Model development
○ domain-science-specific metrics

■ ease/time to develop a new model
■ time to generate new model (i.e., mesh generation)

● Software development (sync w. SWE breakout group)
○ style guides, coding standards
○ software quality
○ coordination among multiple collaborating groups (reduce duplication, acknowledge competition/collab at the

same time, keep track of project output/code for future use)
● Testing (sync w. SWE breakout group)
● Verification
● Simulation
● Analysis
● Validation
● Experimental design
● Software maintenance and sustainability

Throughout all: Requirements engineering: work needed to translate into CSE SW devpt process

● functional requirements: what the system does
● nonfunctional requirements, i.e. software quality

Software Architectures

A software architecture is ‘the fundamental
organization of a system embodied in its
components, their relationships to each other,
and to the environment, and the principles
guiding its design and evolution’ [ISO/IEC
42010-2007].

Software architectures are fundamental to

the development of technically sustainable

software

● Primary carrier of system qualities (NFR) i.e.

pre-system understanding.

● Influence how developers are able to

understand, analyze, extend, test and

maintain a software system i.e. post-

deployment system understanding.

Software architectures underpin software
sustainability.

● Challenges in transitioning from small intial
CSE research (e.g., grad student project)
to longer-term software resource:
when/how to transition and explicitly
incorporate software architecture

Challenges of Architecture Sustainability:

● Architectural drift and erosion
● Architectural knowledge vaporization

Venters, C. C., et. al., (2014). “The Nebuchadnezzar Effect: Dreaming of Sustainable Software through Sustainable Software Architectures,” WSSSPE’2,

Second Workshop on Sustainable Software for Science: Practice and Experiences, New Orleans, LA, USA, 16 November 2014. DOI: http://dx.doi.org/10.

6084/m9.figshare.1112484

How can productivity and performance metrics be practically defined and
applied for CSE software efforts?

● User/domain community has to be involved in definition
● Can define metrics for specific projects to identify and overcome specific

issues
● Can measure specific (hardware) characteristics of code running on a specific

platform
● Ideally should be a natural part of work flow/processes

○ Easy to gather (maybe tool support)

● Goals-questions-metrics approach
○ Comes from SEI
○ By its nature focuses on specific issues

● Sustainability as a non-functional requirement
○ Being considered for incorporation in ISO standard for software quality

Focus on human productivity and sustainability
Comments from Bob Lucas, plenary presentation:

To maintain, much less improve productivity and sustainability, we need to
take control of our destiny:

● False economy of today’s systems: should maximize overall productivity
of systems (CSE throughput), not flops per dollar

○ E.g., Blue Waters is not on the TOP 500 list

● Labor is expensive: Focus on human productivity

Discussion during breakout:

● Today’s diversity of systems environments tends to go against human
productivity

● Bare flop counts and similar measures are not a good way to quantify
performance

○ Climate community measures simulated years per day of execution
○ Maybe other ways to better connect performance with some idea of scientific productivity

● Software quality measures contribute strongly to human ability to maintain
software

Software Quality Testing Strategies

● Unit tests
● Regression tests
● Code coverage
● Static analysis
● Dynamic analysis
● Number of global entities in code
● Number of arguments passed to procedures
● …
● HPCS spent a lot of effort looking at very advanced ideas of “productivity” in a

community that doesn’t even use these basic measures
○ Ignored the low-hanging fruit

● Kitware (example, not unique) runs nightly and displays on a dashboard --
quickly see negative changes, and address

Community Support for Developing Metrics

● Reference Framework for Evaluating Software Success poster (see next 2
slides for details)

● Planned DOE study on foundations for metrics fell through
○ Reviewers thought it was underbudgeted

● HPCS invested a lot of effort on productivity
○ Some of which has been published
○ Much of which is proprietary to vendors and has not been published

● Software developers tend to be domain scientists, paid to do science
○ Productivity costs are hidden from view

● Need $ and support from sponsors to build community and develop metrics
○ No one agency can do this
○ But currently no agency is doing this
○ How to get started?

● Opportunities with DOE Exascale Computing Project and NSCI?

https://drive.google.com/file/d/0B3bFpDR9mZTsS0p2MER5d04xeG8/view

Toward a Framework for Evaluating Software Success:
A Proposed First Step

● See CSESSP2015 white paper and poster of same name by: Stan Ahalt, Bruce Berriman, Maxine
Brown, Jeffrey Carver, Neil Chue Hong, Allison Fish, Ray Idaszak, Greg Newman, Dhabaleswar
Panda, Abani Patra, Elbridge Gerry Puckett, Chris Roland, Douglas Thain, Selcuk Uluagac, Bo
Zhang

● Feb 17-18, 2015 NSF SI2 PI workshop (NSF award# 1521388) breakout team:
○ Discussed framework for the creation of metrics

■ Define software success factors across different research domains
○ Improve both the software and the metrics (i.e. “eat their own dogfood”)

■ Stakeholders put up their own software for evaluation within the network
○ Build Community

■ Improve the cross-talk among different research domains of what makes software
successful

● Build an open framework by which to develop software success metrics
○ Software “peer review group”

■ Representative stakeholders who will self-review software works created by their
respective communities; concurrently develop metrics

○ Community-governed; no single institution oversees the activity or infrastructure for this
■ No central “group of experts”!

○ Evolve into community generated and adopted standards
■ How will peer-review of code and corresponding peer-review of software success metrics

be performed and tied together across different research domains?

http://www.orau.gov/csessp2015/whitepapers/ahalt_stan.pdf
https://drive.google.com/file/d/0B3bFpDR9mZTsS0p2MER5d04xeG8/view

Toward a Framework for Evaluating Software Success:
A Proposed First Step (Continued)

● Further questions to explore in this effort

○ How will peer-review of code and corresponding peer-review of software success metrics be
tied together across different research domains?

■ What type of infrastructure will best facilitate this?
○ How will ever-increasing open participation by the community be nurtured and measured?

○ What governance structure will be put in place to ensure shared community governance of the
software and metric peer-review process?

○ How will factors of software success be evaluated: e.g. criticality, value, sustainability,

usability, reusability, performance, functionality, capability, availability, scientific impact,
usefulness, reliability?

○ How should we manage the process for submitting software for evaluation?
■ Should we require all group members to regularly submit their own software?

○ What types of documentation or outcomes would be useful toward developing a larger-scale
metrics framework?

What impact do emerging and rapidly changing parallel and heterogeneous
architectures have on long-term software sustainability?

● They put software to the test.
● Tail wagging the dog -- can we get the software/science needs to drive more

of the architectural decisions?
○ Can we be doing more?
○ Is CSE big enough to drive architectural choices?

■ Today is seems to be gaming and mobile driving
■ Can we get vendors to deflect their trajectories slightly to accommodate our needs?

● Need better communication between hardware and SW developers so SW
can anticipate forthcoming HW

● Come together on benchmarks that go into procurements so we carry more
weight

What role can funding agencies play in fostering efforts?

● Look for opportunities for cross-agency or coordinated investments
● In NSCI, agencies have roles, which are being defined
● Need to be able to define long-term, quantifiable goals
● Different agencies have different missions

○ Currently, little or no collaboration
○ Mandated in NSCI

● Facilities expected to show high utilization, but this may not give best
productivity

○ Due (at least in part) to different funding sources and not coordinating across

Do we have effective mechanisms for software technology transfer from
national lab and academia to industry?

● Spin-offs from universities, labs
● Open source

○ Has emphasis on OS devalued software
○ If you think software is free, why invest in it?
○ Creates a large artificial barrier to entry for commercial tools
○ Also enabled a lot, so not uniformly negative

● Competition between commercial and “academic” codes
○ How to decide when to cut off one and move to another

● Yes, we have programs, but they’re not enough
○ Industry outreach/tech transfer/private sector/etc. programs at many facilities/centers

● Not clear how this relates to metrics
● Maybe the question is backwards? Is there productivity technology from

industry that can be transferred into academia and labs?

Other issues/topics?

● Can we increase productivity in creating the models we use in simulations?
○ Part of overall scientific process
○ Are there a limited number of workflows for this that we can support

● Need some pathfinding exercises to “try out” metrics and see how they work
● At NASA, concern about human space-flight software quality metrics being

applied to science codes
○ Risk graded approach

○ Climate under particular scrutiny due to expense of responses and possibilities for “climate-
gate” type events

● Easy-access dashboards to see metrics, and trends/progress
○ Caution: easy to abuse/over-use metrics
○ Activity metrics are useful -- both target software and TPL/infrastructure

