Scientific Computing's Productivity
Gridlock and How Software
Engineering Can Help

Stuart Faulk, Ph.D.
Computer and Information Science
University of Oregon

© Stuart Faulk CSESSP 2015



Outline

- Challenges of Scientific Computing (SC)
- SC’s growing productivity problems

- Productivity studies and root causes

- Implications of the “expertise gap”
- How Software Engineering could (usefully) contribute

© Stuart Faulk 2015



Focus on SC Community Codes

Growing demand for “Virtual Research
and Test” facilities
— Simulation, analysis, and test capabilities for
complex science and engineering
Materials, fluid dynamics, climate, weather, etc.

— Need for multi-physics, high resolution, high
fidelity, multi-scale, real-time

. , Thermonuclear flame plume
Shifting paradigm bursting through the surface of

— 1960s->today: codes for and by subject-matter expeﬁgggii‘i"’rﬁ;ﬁ (FEAEl -

— 1990s->today> : codes developed for and by diverse, distributed
community

SC codes for community use present greatest challenges going
forward

© S. Faulk 2015 3



SC Distinguishing Characteristic

Typical Large-scale CSE Project Life Cycle

major product releases

Production,
product development
and user support phase

@
1]
3]
@
[
2
s
=
=

for testing

Retirement
user support
minimal development
minimal porting

initial release for

Continued product
product .
improvement testlng (V&V) and

Initial and - .
development | development appl Catlon by sers

5 15 20 25

serious

testing by calendar time (years)

retirement phase begins

- Driven by the science (not software qualities)
— Time-to-solution
— Correctness
— Agility (Emerging/changing requirements)
— Performance really matters
- Not the only important qualities
— Long life cycle
— Ports relatively frequent

4
Post & Kendall, Large-Scale Comp. Scientific and Engi. Project Development and Production Workflows, CTWatch, 2007



The Challenge of Computer Complexity

Microprocessor Performance “Expectation Gap” over Time (1985-2020 projected)
1,000,000

- Machine complexity is increasing

100,000 ”"‘.T.‘ - ClOCk'Speed Is stuck while circuit
i The Expectation Gap denSIty Increases
! — Future of increasing parallelism,

heterogeneous architectures,
power issues, decreasing
reliability

o 27 National Academy Study: The Future of
1985 1990 1995 2000 2095 2010 2015 2020 Comput|ng Performance (2010)

- Coding becoming correspondingly more difficult
— Map correct scientific solutions onto target hardware
— Scaling and optimizing to effectively utilize hardware capabilities
— Achieving and demonstrating correctness
— Maintain or evolve code community needs over the life cycle
— Port widely-used solutions to new platforms



The SC Productivity Problem

Definition: use “productivity” to denote the (scientific)
value produced per unit cost over time

SC has a growing problem in end-to-end productivity

Observation: real productivity is declining even as
hardware capabillities increase:

— Increasingly long and expensive development

— Higher risk of failure

— Growing maintenance costs

— Increasing cost/failures porting to new machines

Need: improving requires understanding source and
nature of productivity bottlenecks

© S. Faulk 2015



The SC Productivity Problem

- Definition: use “productivity” to denote the (scientific)
value produced per unit cost over time

- SC has a growing problem in end-to-end productivity

- Observation: real productivity is declining even as
hardware capabilities increase; increased effort to:
— Code correct solutions
— Deploy with high utilization
— Maintain and evolve
— Port to new platforms

- Need: understand productivity bottlenecks in current
development paradigms

© S. Faulk 2015



SC Workflow Studies

- Empirical studies of real SC developments
(ASCI, HPCS, Sun)

- Goal: understand where current code development
practices limit end-to-end productivity

— Interdisciplinary team from social, physical, and computational
sciences

— Collected empirical data validated by multiple approaches
Case studies, interviews, focus groups
In-situ observations of developers (Hackystat)
Experimental studies: controlled developments, measurements
- Developed an canonical SC workflow model to:
— ldentify tasks consuming the greatest resources
— Skill sets required for those tasks

© S. Faulk 2015



Canonical HPC Workflow

1. Understand the Question

Refine Problem
Statement

¥ |

2. Formulate Approach

3. Experiment Prototype

Skill Sets
Needed at
Each Stage

Science &
Programming

Science

Science &
Programming

© S. Faulk 2015

6. Code for HPC

Skill Sets
Needed at
Each Stage

Optimizing /
Tuning

Science &
Programming

Optimizing
Parallelizing




SC Workflow Bottlenecks

Most resource intensive

tasks

— Developing correct
scientific programs

— Serial optimization and
tuning

— Code parallelization and
organization (scaling)

— Porting and modifying
existing parallel code

Bottlenecks result from:
— Manual methods

— Multidisciplinary expertise

Hand coding, scaling,
optimization, verification

1. Understand the Question

Refine Problem P

Staternent

b

2. Formulate Approach

Most tasks demand multiple skill sets

Domain science, programming, parallelization,

and target hardware

© S. Faulk 2015

Skill Sets
Needed at
Each Stage

Science &
Programming

Sciehce

Science &
Programming

5. Evaluate Approach V & V

Skill Sets
Needed at
Each Stage

Optimizing /
Tuning

Science &
Programming

Optimizing
Parallelizing

10



Finding: the Expertise Gap

Bottom line: productivity depends on multidisciplinary
experts optimizing parallel code by hand

Key finding: there exists an expertise gap at the heart

of the productivity crisis

— Few individuals with needed skills for a given scientific
domain, language, and hardware set

— Training (apprenticeship) takes years
— Once acquired, are often not portable
and it will only get worse...

— Demand is growing
— More demanding as hardware becomes more complex

© S. Faulk 2015 11



Finding: Inadequate SE Methods and
Tools

- SC code development is dominated by informal
processes and manual methods
— Processes largely ad hoc
— Use of high-level languages is low
— Limited use of current SE methods

- Tool support fragmentary, limited, unreliable

— Often ad hoc collections

— Little support for most labor-intensive tasks (scaling,
optimization, porting, etc.)

- Upshot: Process and product quality depend on
individual skills and efforts

© S. Faulk 2015

12



Historical Comparison

Pre-Industrial Post-Industrial

The Craftsman The Factory

... our most advanced scientific programs are foundering
on pre-industrial development models

© S. Faulk 2015

13



Can SE contribute? Yes but ...

- SC desperately needs new methods
— Bottlenecks are inherent in hand-crafted paradigm
— Cannot produce multidisciplinary experts fast enough
— Productivity gridlock: resulting inability to start solving
productivity problems, even as overall productivity declines
- Software Engineering has addressed many of these
Issues but solutions are not adapted to SC
goals/constraints
— Adoption is disruptive
— Benefits inobvious
— History of failing in practice
— Perception that “computer scientists don’t address our
needs”

© S. Faulk 2015

14



R&D Areas: The Expertise Gap

- Improving productivity requires reducing dependence on
multidisciplinary experts

- Keys are in abstraction and automation (SE strengths)
— Provide computational abstractions reflecting the science and math of
the problem domain

Reduce program complexity (size, understandability, maintainability)
Ease verification

— Provide hardware-independent abstractions
Expressing algorithmic parallelization
Optimizing and tuning for performance, locality, latency, etc.

— Automate the mapping hardware
Parallelism, data layout, latency
Preserving sufficient performance

— Engineer for systematic reuse of conceptual structures

- Goals: reduce manual labor, allow scientists to reason in the
problem domain

© S. Faulk 2014 15



Requirements for Success

- SE community must work with SC community to
address concerns for relevance and risk
— Must revisit common SE assumptions, align with SC realities

— Must re-engineer solutions (processes, methods, tools) or invent
anew

— Must validate on real problems
Demonstrate effectiveness in meeting developmental goals
Demonstrate sufficient control of run-time performance
Demonstrate cost effectiveness

- Success will require collaboration between the SC and
SE communities

- Institutions must provide motivation, funding,
infrastrcture

© S. Faulk 2015 16



Questions?



Sources

D. E. Post, R. P. Kendall, Internat. J. High Perf. Comput. Appl. 18(4), 399 (2004).

Van De Vanter, M.L., Post, D., and Zosel, M.E. "HPC Needs a Tool Strategy". In Proceedings
of Second International Workshop on Software Engineering for High Performance Computing
System Applications (ICSE 2005). St. Louis. 2005. p. 15

D. Post and L. Votta, “Computational Science Demands a New Paradigm,” Physics Today,
vol. 58, no. 1, 2005, pp. 35-41.

Jeffrey C. Carver, Richard P. Kendall, Susan Squires, Douglass E. Post, “Software
Development Environments for Scientific and Engineering Software: A Series of Case
Studies,” Proceedings of the 29th International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, pp. 440-559, May 20-26, 2007.

Stuart Faulk, John Gustafson, Philip M. Johnson, Adam Porter, Walter F. Tichy, Lawrence G.
Votta, “Measuring HPC Productivity,” International Journal of High Performance Computing
Applications: Special Issue on HPC Productivity, J. Kepner (editor), 18(4), Winter 2004
(November).

DOE, ASCR Workshop on Software Productivity for Extreme-scale Science, Rockville MD,
Jan. 2014.

CREATE Link

- http://www.hpc.mil/index.php/2013-08-29-16-03-23/software-applications-support-sas-overview/computational-research-for-
engineering-and-science-cres/computational-research-for-engineering-acquisition-tools-and-environments-create

© S. Faulk 2015

18


http://www.hpc.mil/index.php/2013-08-29-16-03-23/software-applications-support-sas-overview/computational-research-for-engineering-and-science-cres/computational-research-for-engineering-acquisition-tools-and-environments-create
http://www.hpc.mil/index.php/2013-08-29-16-03-23/software-applications-support-sas-overview/computational-research-for-engineering-and-science-cres/computational-research-for-engineering-acquisition-tools-and-environments-create
http://www.hpc.mil/index.php/2013-08-29-16-03-23/software-applications-support-sas-overview/computational-research-for-engineering-and-science-cres/computational-research-for-engineering-acquisition-tools-and-environments-create

