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Outline

- Challenges of Scientific Computing (SC)
- SC’s growing productivity problems

- Productivity studies and root causes

- Implications of the “expertise gap”
- How Software Engineering could (usefully) contribute
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Focus on SC Community Codes

Growing demand for “Virtual Research
and Test” facilities
— Simulation, analysis, and test capabilities for
complex science and engineering
Materials, fluid dynamics, climate, weather, etc.

— Need for multi-physics, high resolution, high
fidelity, multi-scale, real-time

. , Thermonuclear flame plume
Shifting paradigm bursting through the surface of

— 1960s->today: codes for and by subject-matter expeﬁgggii‘i"’rﬁ;ﬁ (FEAEl -

— 1990s->today> : codes developed for and by diverse, distributed
community

SC codes for community use present greatest challenges going
forward
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SC Distinguishing Characteristic

Typical Large-scale CSE Project Life Cycle
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- Driven by the science (not software qualities)
— Time-to-solution
— Correctness
— Agility (Emerging/changing requirements)
— Performance really matters
- Not the only important qualities
— Long life cycle
— Ports relatively frequent

4
Post & Kendall, Large-Scale Comp. Scientific and Engi. Project Development and Production Workflows, CTWatch, 2007



The Challenge of Computer Complexity

Microprocessor Performance “Expectation Gap” over Time (1985-2020 projected)
1,000,000

- Machine complexity is increasing
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! — Future of increasing parallelism,
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power issues, decreasing
reliability
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- Coding becoming correspondingly more difficult
— Map correct scientific solutions onto target hardware
— Scaling and optimizing to effectively utilize hardware capabilities
— Achieving and demonstrating correctness
— Maintain or evolve code community needs over the life cycle
— Port widely-used solutions to new platforms



The SC Productivity Problem

Definition: use “productivity” to denote the (scientific)
value produced per unit cost over time

SC has a growing problem in end-to-end productivity

Observation: real productivity is declining even as
hardware capabillities increase:

— Increasingly long and expensive development

— Higher risk of failure

— Growing maintenance costs

— Increasing cost/failures porting to new machines

Need: improving requires understanding source and
nature of productivity bottlenecks
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The SC Productivity Problem

- Definition: use “productivity” to denote the (scientific)
value produced per unit cost over time

- SC has a growing problem in end-to-end productivity

- Observation: real productivity is declining even as
hardware capabilities increase; increased effort to:
— Code correct solutions
— Deploy with high utilization
— Maintain and evolve
— Port to new platforms

- Need: understand productivity bottlenecks in current
development paradigms
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SC Workflow Studies

- Empirical studies of real SC developments
(ASCI, HPCS, Sun)

- Goal: understand where current code development
practices limit end-to-end productivity

— Interdisciplinary team from social, physical, and computational
sciences

— Collected empirical data validated by multiple approaches
Case studies, interviews, focus groups
In-situ observations of developers (Hackystat)
Experimental studies: controlled developments, measurements
- Developed an canonical SC workflow model to:
— ldentify tasks consuming the greatest resources
— Skill sets required for those tasks
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Canonical HPC Workflow

1. Understand the Question

Refine Problem
Statement

¥ |

2. Formulate Approach

3. Experiment Prototype

Skill Sets
Needed at
Each Stage

Science &
Programming

Science

Science &
Programming
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6. Code for HPC

Skill Sets
Needed at
Each Stage

Optimizing /
Tuning

Science &
Programming

Optimizing
Parallelizing




SC Workflow Bottlenecks

Most resource intensive

tasks

— Developing correct
scientific programs

— Serial optimization and
tuning

— Code parallelization and
organization (scaling)

— Porting and modifying
existing parallel code

Bottlenecks result from:
— Manual methods

— Multidisciplinary expertise

Hand coding, scaling,
optimization, verification

1. Understand the Question

Refine Problem P

Staternent

b

2. Formulate Approach

Most tasks demand multiple skill sets

Domain science, programming, parallelization,

and target hardware
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Skill Sets
Needed at
Each Stage

Science &
Programming

Sciehce

Science &
Programming

5. Evaluate Approach V & V

Skill Sets
Needed at
Each Stage

Optimizing /
Tuning

Science &
Programming

Optimizing
Parallelizing
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Finding: the Expertise Gap

Bottom line: productivity depends on multidisciplinary
experts optimizing parallel code by hand

Key finding: there exists an expertise gap at the heart

of the productivity crisis

— Few individuals with needed skills for a given scientific
domain, language, and hardware set

— Training (apprenticeship) takes years
— Once acquired, are often not portable
and it will only get worse...

— Demand is growing
— More demanding as hardware becomes more complex
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Finding: Inadequate SE Methods and
Tools

- SC code development is dominated by informal
processes and manual methods
— Processes largely ad hoc
— Use of high-level languages is low
— Limited use of current SE methods

- Tool support fragmentary, limited, unreliable

— Often ad hoc collections

— Little support for most labor-intensive tasks (scaling,
optimization, porting, etc.)

- Upshot: Process and product quality depend on
individual skills and efforts
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Historical Comparison

Pre-Industrial Post-Industrial

The Craftsman The Factory

... our most advanced scientific programs are foundering
on pre-industrial development models
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Can SE contribute? Yes but ...

- SC desperately needs new methods
— Bottlenecks are inherent in hand-crafted paradigm
— Cannot produce multidisciplinary experts fast enough
— Productivity gridlock: resulting inability to start solving
productivity problems, even as overall productivity declines
- Software Engineering has addressed many of these
Issues but solutions are not adapted to SC
goals/constraints
— Adoption is disruptive
— Benefits inobvious
— History of failing in practice
— Perception that “computer scientists don’t address our
needs”
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R&D Areas: The Expertise Gap

- Improving productivity requires reducing dependence on
multidisciplinary experts

- Keys are in abstraction and automation (SE strengths)
— Provide computational abstractions reflecting the science and math of
the problem domain

Reduce program complexity (size, understandability, maintainability)
Ease verification

— Provide hardware-independent abstractions
Expressing algorithmic parallelization
Optimizing and tuning for performance, locality, latency, etc.

— Automate the mapping hardware
Parallelism, data layout, latency
Preserving sufficient performance

— Engineer for systematic reuse of conceptual structures

- Goals: reduce manual labor, allow scientists to reason in the
problem domain
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Requirements for Success

- SE community must work with SC community to
address concerns for relevance and risk
— Must revisit common SE assumptions, align with SC realities

— Must re-engineer solutions (processes, methods, tools) or invent
anew

— Must validate on real problems
Demonstrate effectiveness in meeting developmental goals
Demonstrate sufficient control of run-time performance
Demonstrate cost effectiveness

- Success will require collaboration between the SC and
SE communities

- Institutions must provide motivation, funding,
infrastrcture
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Questions?
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