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Outline

• Challenges of Scientific Computing (SC)
• SC’s growing productivity problems
• Productivity studies and root causes
• Implications of the “expertise gap”
• How Software Engineering could (usefully) contribute 
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Focus on SC Community Codes

• Growing demand for “Virtual Research
 and Test” facilities
– Simulation, analysis, and test capabilities for 

complex science and engineering
• Materials, fluid dynamics, climate, weather, etc.

– Need for multi-physics, high resolution, high 
fidelity, multi-scale, real-time

• Shifting paradigm
– 1960s->today: codes for and by subject-matter experts
– 1990s->today> : codes developed for and by diverse, distributed 

community
• SC codes for community use present greatest challenges going 

forward
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Thermonuclear flame plume 
bursting through the surface of 
a white dwarf: (FLASH multi-
physics sim)



SC Distinguishing Characteristic

• Driven by the science (not software qualities)
– Time-to-solution 
– Correctness
– Agility (Emerging/changing requirements) 
– Performance really matters

• Not the only important qualities
– Long life cycle
– Ports relatively frequent 
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Post & Kendall, Large-Scale Comp. Scientific and Engi. Project Development and Production Workflows, CTWatch, 2007



The Challenge of Computer Complexity
• Machine complexity is increasing

– Clock-speed is stuck while circuit 
density increases

– Future of increasing parallelism, 
heterogeneous architectures, 
power issues, decreasing 
reliability
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• Coding becoming correspondingly more difficult
– Map correct scientific solutions onto target hardware
– Scaling and optimizing to effectively utilize hardware capabilities
– Achieving and demonstrating correctness
– Maintain or evolve code community needs over the life cycle
– Port widely-used solutions to new platforms

National Academy Study: The Future of
Computing Performance (2010)



The SC Productivity Problem

• Definition: use “productivity” to denote the (scientific) 
value produced per unit cost over time

• SC has a growing problem in end-to-end productivity 
• Observation: real productivity is declining even as 

hardware capabilities increase:
– Increasingly long and expensive development
– Higher risk of failure
– Growing maintenance costs
– Increasing cost/failures porting to new machines

• Need: improving requires understanding source and 
nature of productivity bottlenecks
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The SC Productivity Problem

• Definition: use “productivity” to denote the (scientific) 
value produced per unit cost over time

• SC has a growing problem in end-to-end productivity 
• Observation: real productivity is declining even as 

hardware capabilities increase; increased effort to:
– Code correct solutions
– Deploy with high utilization
– Maintain and evolve
– Port to new platforms

• Need: understand productivity bottlenecks in current 
development paradigms
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SC Workflow Studies 

• Empirical studies of real SC developments
(ASCI, HPCS, Sun)

• Goal: understand where current code development 
practices limit end-to-end productivity
– Interdisciplinary team from social, physical, and computational 

sciences 
– Collected empirical data validated by multiple approaches

• Case studies, interviews, focus groups
• In-situ observations of developers (Hackystat)
• Experimental studies: controlled developments, measurements

• Developed an canonical SC workflow model to:
– Identify tasks consuming the greatest resources
– Skill sets required for those tasks
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Canonical HPC Workflow



SC Workflow Bottlenecks
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• Most resource intensive 
tasks
– Developing correct 

scientific programs
– Serial optimization and 

tuning
– Code parallelization and 

organization (scaling)
– Porting and modifying 

existing parallel code

• Bottlenecks result from: 
– Manual methods

• Hand coding, scaling,
optimization, verification

– Multidisciplinary expertise
• Most tasks demand multiple skill sets 
• Domain science, programming, parallelization,

and target hardware 
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Finding: the Expertise Gap

• Bottom line: productivity depends on multidisciplinary 
experts optimizing parallel code by hand

• Key finding: there exists an expertise gap at the heart 
of the productivity crisis
– Few individuals with needed skills for a given scientific 

domain, language, and hardware set
– Training (apprenticeship) takes years
– Once acquired, are often not portable

• and it will only get worse…
– Demand is growing
– More demanding as hardware becomes more complex
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Finding: Inadequate SE Methods and 
Tools

• SC code development is dominated by informal 
processes and manual methods
– Processes largely ad hoc
– Use of high-level languages is low 
– Limited use of current SE methods 

• Tool support fragmentary, limited, unreliable
– Often ad hoc collections
– Little support for most labor-intensive tasks (scaling, 

optimization, porting, etc.)
• Upshot: Process and product quality depend on 

individual skills and efforts
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Historical Comparison

Pre-Industrial Post-Industrial

The Craftsman The Factory

… our most advanced scientific programs are foundering 
on pre-industrial development models
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Can SE contribute? Yes but …

• SC desperately needs new methods
– Bottlenecks are inherent in hand-crafted paradigm
– Cannot produce multidisciplinary experts fast enough
– Productivity gridlock: resulting inability to start solving 

productivity problems, even as overall productivity declines
• Software Engineering has addressed many of these 

issues but solutions are not adapted to SC 
goals/constraints
– Adoption is disruptive
– Benefits inobvious
– History of failing in practice

– Perception that “computer scientists don’t address our 
needs” 
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R&D Areas: The Expertise Gap
• Improving productivity requires reducing dependence on 

multidisciplinary experts
• Keys are in abstraction and automation (SE strengths)

– Provide computational abstractions reflecting the science and math of 
the problem domain
• Reduce program complexity (size, understandability, maintainability)
• Ease verification

– Provide hardware-independent abstractions 
• Expressing algorithmic parallelization
• Optimizing and tuning for performance, locality, latency, etc.

– Automate the mapping hardware
• Parallelism, data layout, latency
• Preserving sufficient performance

– Engineer for systematic reuse of conceptual structures
• Goals: reduce manual labor, allow scientists to reason in the 

problem domain
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Requirements for Success

• SE community must work with SC community to 
address concerns for relevance and risk
– Must revisit common SE assumptions, align with SC realities
– Must re-engineer solutions (processes, methods, tools) or invent 

anew
– Must validate on real problems

• Demonstrate effectiveness in meeting developmental goals
• Demonstrate sufficient control of run-time performance
• Demonstrate cost effectiveness

• Success will require collaboration between the SC and 
SE communities

• Institutions must provide motivation, funding, 
infrastrcture
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Questions?
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