
F-Role of Software
Engineering Research

Lead: Anshu Dubey
Presenter: Ethan Coon

Writer:Ethan Coon

Participants -- Also please add your email address
Anshu Dubey adubey@anl.gov
Devin Matthews
Tom Clune
David Tarboton
Dan Ibanez
Cindy Rubio-Gonzalez
Colin C. Venters
Ethan Coon
Walid Keyrouz
Ernie Lucier
Michael Mascagni
Tien N. Nguyen
Hridesh Rajan
Sol Greenspan
Charles Ferenbaugh cferenba@lanl.gov
Matthew Dwyer
Vikram Adve
Karl Rupp
Grady Campbell
John McGregor
Mike Glass

How can SW engineering knowledge from the broader software community be leveraged
in CSE and customized for it?

Broader SE vs SE for CSE

Is there really a difference between broader SE and SE for CSE? Can we quantify this difference?
- Design studies to understand this? E.g. mining of repositories?
- This can help understand the difference between broad SE and SE for CSE, where projects face

problems
- This can help understand what adaptations for CSE are working.

Fundamental principles of SE apply to CSE, but methods of applying them may differ or need to be
tailored to specifics of CSE.

- For example there may be lateral interactions between code units, or modularity may come at the
cost of performance, there may be many other trade-offs

How can SW engineering knowledge from the broader software community be leveraged
in CSE and customized for it?

The community needs convincing of using tools and best practices. Ways to fix this:
- tools have to be easy, very apparent that the user will gain something (time?, credibility,

acceptance, reproducibility, reduction of technical debt)
- convince people they are incurring technical debt by not using best practices
- If you don’t use these tools/best practices, should all of your results be suspect?

Need to be aware of small vs large teams.

Lifecycle plans and code maturity -- when moving prototype (research) code to production code -- SE has
much to offer here.

What are the areas in SE that need to develop within CSE because they are
underrepresented within SE?

- performance portability -- performance engineering
- interdisciplinary interactions -- separation of concerns in software design -- how to utilize

abstractions in maintaining separation of concerns
- rapidly changing requirements -- research code -- rapidity and magnitude of changes differ with

maturity (though maybe the startup world has thoughts on this?)
- design and integrity (correctness in face of bitwise non-reproducibility)
- multiphysics software, refactoring legacy codes (balance between evolution and revolution)
- Design of verification regime

- testing and reproducibility
- The design of tests should reflect the production requirements instead of focus on one or other

type of testing.
- Code coverage is more challenging to verify.

What role can funding agencies play in fostering efforts?

FOAs that require touching on SE for CSE strategy

- Modeled after data needs
- Requires a conversation between PIs and SE for CSE experts
- Requires someplace/document to touch on what these strategies are.
- Care to not be too specific

- need to encourage, not squash creativity in how to adapt SE for CSE
- need to avoid onerous requirements that can’t reasonably be expected of small teams

How can SW engineering improvements be incorporated and sustained on small CSE
teams with few dedicated SW development resources?

Evangelize, effect cultural change, convince people that they should use them

Regression testing can generally be introduced in a lightweight manner, becoming
more sophisticated over time.

Containers with SE tools ? Decreasing learning curve and administration, such as
repository, automated testing tools etc.

Software carpentry like canned tutorials that teams can download and use
internally -- communication from peers who have adopted -- ties into the
quantification from studies of team productivity through repository mining (spread
the word)

Howtos in a well publicised web location, workshop

What role can funding agencies play in fostering efforts?

Explicitly ask for SE & CSE teams to propose together for some collaborations

Provision for sabbatical visits from SE community to CSE groups

Design call for proposals around the topics highlighted in earlier slides, require
software management and release plan in the submission, and SE practices
should be called out as an important criterion for proposal review, strong emphasis
on comprehensive code verification

Spread of provenance and reproducible results requirement would give the
incentive

Incentive for the SE community to provide tools tailored for small teams in the
CSE community (pay attention to FORTRAN also, it still is the de-facto program
language for many CSE efforts)

