
D-Social Sciences Applied 
to CSE Software Systems

Leads: Daniel S. Katz and Aleksandra Pawlik
Presenters: Dan and Aleksandra

Writers: Dan and Aleksandra



Group Members

● Kosta Damevski, Virginia Commonwealth University
● Mike Glass, Sandia
● Timo Heister, Clemson
● Ray Idaszak, RENCI
● Paul Jones, FDA
● Daniel S. Katz, NSF
● David Lesmes, DOE/BER
● Robert Nagler, RadiaSoft
● Aleksandra Pawlik, Software Sustainability Institute
● David Tarboton, Utah State University
● Ethan Coon, LANL
● Gabrielle Allen, NCSA



Charge & Questions

Charge: Explore the relevance of the social sciences to understanding the 
development and sustainment of CSE software systems over decades by groups of 
individuals with scarce skill sets.

Starter questions:
1. How can theories of human behavior and technology be applied to describe, plan and 

improve CSE SW sustainability and productivity?
2. How can knowledge from other product development systems such as economics and 

manufacturing be leveraged in CSE SW product development?
3. What role can funding agencies play in fostering efforts?



Importance of social issues in software development

● 6 of 9 in working group were aware of studies done by social scientists on scientific 
computing

● There is a body of work in this area, and discussion of that work has had impact on the 
thinking of code developers (e.g. Segal, 2005; Segal, 2009, Easterbrook and Johns, 2009) 

● It’s clear that understanding social issues is important
● Programming is really a social as well as a technical challenge, since most projects 

involve more than one person, and even single person projects usually create or use 
software dependencies

○ For example, the Agile Manifesto is really a social document
○ Also can view artifacts (e.g., software) as social documents, tell a story about the authors (project, process) and 

the purpose

● Social science can help scientists work together better and do better work
● Leads to better software



Importance of social issues in CSE

● Social scientists can make contributions studying:
○ Differences between software developer community vs general population (as shown 

by diversity of gender, etc.)
○ Which are the differences between CSE vs broader SE

■ Which methodologies/tools/etc. work best in each?
■ What adaptations of SE tools to CSE are working and why?



How social skills impact software development

● Formal efforts to teach social skills, such as classes on social styles, 
can help people understand each other’s background, motivations, and 
goals, and help them work together better
○ Improving communication
○ Collaborating better
○ Reducing social friction (unlike intellectual friction that we do want)
○ Increasing diversity
○ Overcoming unfounded resistance to change
○ Acknowledging expert knowledge
○ Listening improves goal orientation & creates a safe environment to contribute
○ Increasing happiness
○ Facilitating learning/distribution of knowledge
○ Constructing effective and merit-based (ad hoc) leadership
○ Making more Facebook friends, and increasing LinkedIn endorsements



How social skills impact software ecosystems

● Software is built across scales, domains, etc.

● We often want to connect them together, which means the 
communities have to coordinate or be coordinated

● This is currently done in ad hoc way

● We need to understand how to do this more systematically, to 
build an overall ecosystem that’s accessible to domain scientists 
and sustainable

● Social sciences can help



CSE teams and social skills

● As software projects get bigger, it’s important that the teams are not just 
scientists but also include software professionals
(though all people who write software should have software training)

● Software folks may be more amenable to methodologies and social 
lessons – “there’s more to software development than just writing code”

● Big projects need education about software development, and social 
lessons too

● This can go hand-in-hand with what the software engineering field has 
already recognised as the importance of the human factor

(unclear if we want to keep this, or if it depends on too many assumptions)



Social impacts on code development and communities

● Code is developed within a particular context which is created by people and 
culture

○ Important to understand and recognize the (social) context when studying the process and 
code

○ This can be done effectively by social scientists

● To make a project sustainable, need the people who work on it to continue 
to want to do so, need to grow community, make it easy and desirable for 
people to join and contribute

○ Joseph Porcelli’s (GovDelivery) model of motivations (for people) and friction (for 
projects) is related - concept: when the motivations outweigh the frictions, people 
contribute to the projects

● If you are rewarded for others using or modifying your code, it will change 
your behavior in how you work with others and how you share your code - 
just making it open source is not enough



Bringing social scientists into projects

● Concerns about social scientists and their role in science projects - if the 
social scientists aren’t respected by the other scientists, they can’t 
contribute effectively.

● Problems in science, technology, software are very interesting to social 
scientists

● Perhaps bring them in as researchers - they are here to do their research, 
not to solve your problem, but over time, their understanding will help 
you solve your problems

● Be aware that analyzing the social structure can have negative impacts 
too
○ The act of measuring something can lead people to want to change it



Social context of societal understanding of role of CSE

● Social expectations on trustworthiness of software
○ Maybe of CSE modeling in general?
○ Related to communication and understanding of uncertainty
○ Not clear if this expectation is positive or negative
○ Related to difference in group membership vs general public (gender 

balance, minority balance, etc.)
● Social expectations on trustworthiness of scientific method as 

implemented in software, including reproducibility
● Public relations is important at all levels - personal, company, 

government

(not sure if this material fits into this group or report, but captured for 
context)



References & resources

● Easterbrook, S. & Johns, T. Engineering the software for understanding climate change Computing in Science & 
Engineering, IEEE, 2009, 11, 65-74

● Segal, J. When Software Engineers Met Research Scientists: A Case Study Empirical Software Engineering, 2005, 
10, 517-536

● Segal, J. Some challenges facing software engineers developing software for scientists Software Engineering for 
Computational Science and Engineering, 2009. SECSE '09. ICSE Workshop on, 2009, 9 -14

● Wood, W. & Kleb, W. Exploring XP for scientific research Software, IEEE, 2003, 20, 30 - 36
● Software Carpentry, http://software-carpentry.org/
● (need to add things from Herbsleb, Howison, Crowston, etc.)

http://software-carpentry.org/

