
1 Managed by UT-Battelle
 for the U.S. Department of Energy Roadmap for Sustainable CSE Ecosystems

A Roadmap for
Sustainable Ecosystems

of CSE Software
Roscoe A. Bartlett, Ph.D.

bartlettra@ornl.gov
http://web.ornl.gov/~8vt/

Oak Ridge National Laboratory

Trilinos Software Engineering and Integration Lead
CASL VERA Software Engineering Lead

Computational Science and Engineering Software

Sustainability and Productivity Challenges (CSESSP)
Workshop

Rockville, MD
October 15 - 16, 2015

mailto:bartlettra@ornl.gov
http://web.ornl.gov/~8vt/
http://web.ornl.gov/~8vt/
http://web.ornl.gov/~8vt/

2 Managed by UT-Battelle
 for the U.S. Department of Energy Roadmap for Sustainable CSE Ecosystems

Overview of CSE Software Ecosystems:
• Sophisticated cutting-edge algorithms implemented by PhD

experts from different fields
• Packages independently implemented, maintained, and

released by different organizations and institutions
• Many packages constantly developed over many decades and

changes to programming models, computer architectures , etc.
• Many APPs (i.e. customers) need access to the latest versions

of some packages (e.g. driving research).

Overview of CSE Software Ecosystem Challenges

App2

App1
App3

App4

A B

C D

E F

Example: Small ecosystem of
packages and applications

Motivating/example ecosystems:
• Trilinos: 68 native pkgs, 90 upstream TPLs (third party libraries), many critical downstream pkgs/apps
• CASL VERA: 18 repositories integrated with almost CI, 10 upstream TPLs => TPLs #1 portability issue!
• SNL SIERRA: Uses 30+ upstream pkgs/TPLs (including Trilinos, PETSc, etc.)
• IDEAS xSDK: Trilinos, PETSc, SuperLU, HYPRE (and several upstream TPLs) and BER app codes
Challenges to Sustainable Ecosystems of CSE Software:
1. Lifecycle and software quality of individual packages: Is a package by itself ready to be used by

customers and participate in an ecosystem?
2. Sustainability of software packages: Is a package sustainable over long lifecycle?
3. Maintaining compatibility of packages in the ecosystem: Can the compatibility of interdependent

packages be maintained over decades and satisfy customer needs?
4. Building a compatible set of packages for a given application from source: Can a compatible set of

interdependent packages be effectively deployed to customers?

3 Managed by UT-Battelle
 for the U.S. Department of Energy Roadmap for Sustainable CSE Ecosystems

Roadmap for Sustainable CSE Software Ecosystems

App2

App1
App3

App4

A B

C D

E F
1. Lifecycle and software quality of individual packages: Is a

package by itself ready to be used by customers and participate in
an ecosystem?
– Lean/Agile lifecycle for CSE software:

• Exploratory (EX) => Research Stable (RS) => Production
Growth (PG) => Production Maintenance (PM)

• Existing software grandfathered in using Legacy Software
Change Algorithm

2. Sustainability of software packages: Is a package sustainable over long lifecycle?
– Self-Sustaining Software: open-source license, strong automated tests, clean design/code,

minimal controlled internal and external dependencies (stopping at standards)
3. Maintaining compatibility of packages in the ecosystem: Can the compatibility of

interdependent packages be maintained over decades and satisfy customer needs?
– Continuous Integration (CI) => e.g. Trilinos packages, Google online apps (5K+ developers)
– Almost Continuous Integration (ACI) => e.g. INL MOOSE, CASL VERA, SIERRA/Trilinos, …
– Punctuated Releases => Semantic Versioning Standard X.Y.Z , sets of backward compatible

releases (i.e. fixed X, increment Y), buildable against multiple versions of upstream packages
4. Building a compatible set of packages for a given application from source: Can a

compatible set of interdependent packages be effectively deployed to customers?
– Build & Install wrappers around heterogeneous build systems (CMake, autotools, raw

makefiles, etc.) => e.g. CMake ExternalProject, Spack, PETSc --download-xxx, CASL VERA TPLs
– Uniform build system for all packages: => e.g. SNL SIERRA (replaced native build process with

new bjam files for 30+ TPLs), TriBITS/CMake (Trilinos, CASL VERA (Trilinos, SCALE/Exnihilo,
COBRA-TF, MPACT, …)), Google online apps (2K+ projects)

4 Managed by UT-Battelle
 for the U.S. Department of Energy Roadmap for Sustainable CSE Ecosystems

Example: Maintaining Compatibility and Deploying
Packages Over Many Released Versions

App2

App1
App3

App4

A B

C D

E F

Release Set 1: A1, B1, C1, D1, E1, F1
Release Set 2: => All release against A1!
• A2
• B2: A1
• C2: B1(A1), A1
• D2: B1(A1)
• E2: C1(B1(A1), A1), A1
• F2: E1(C1(B1 (A1), A1), A1), D1(B1 (A1), C1(B1 (A1),

A1), A1
Release Set 3: => Can’t all use A2!
• A3
• B3: A2
• C3: B2(A1), A2 => A1
• D3: B2(A1)
• E3: C2(B1(A1), A1), A2 => A1
• F3: E2(C1(B1(A1), A1), A1), D2(B1(A1), C2(B1(A1),

A1), A2 => B2, A1

Assumptions:
• Start out all compatible packages, version 1.0
• New releases on same cadence (e.g. every quarter/year, etc.)
• Upgrade to most current allowed version of upstream packages
• No coordination/staging between package developers or releases
• Package ‘A’ breaks backward compatibility with each release, all other

packages maintain backward compatibility
Release Set 4: => Most stuck with A1 or A2!
• A4
• B4: A3
• C4: B3(A2), A3 => A2
• D4: B3(A2)
• E4: C3(B2(A1), A1), A3 => A1
• F4: E3(C2(B1(A1), A1), A1), D3(B2(A1)), C3(B2(A1),

A1), A3 => B2, A1
Release Set 5: => Five versions of A in use!
• A5
• B5: A4
• C5: B4(A3), A4 => A3
• D5: B4(A3)
• E5: C4(B3(A2, A2), A4 => A2
• F5: E4(C3(B2(A1), A1), A1), D4(B3(A2)), C4(B3(A2), A2), A4 =>

D3, C3, B2, A1

• Developers for Package A have to support
current and 4 prior releases!

• Some downstream customers stuck with very
old versions of some packages!

