A Roadmap for
Sustainable Ecosystems
of CSE Software

Roscoe A. Bartlett, Ph.D.
bartlettra@ornl.gov

http://web.ornl.gov/~8vt/
Oak Ridge National Laboratory

SR

MisTyy

Trilinos Software Engineering and Integration Lead
CASL VERA Software Engineering Lead

Computational Science and Engineering Software
Sustainability and Productivity Challenges (CSESSP)
Workshop

Rockville, MD
October 15 - 16, 2015

.S. DEPARTMENT OF

b 1

¥ OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

mailto:bartlettra@ornl.gov
http://web.ornl.gov/~8vt/
http://web.ornl.gov/~8vt/
http://web.ornl.gov/~8vt/

Overview of CSE Software Ecosystem Challenges

Overview of CSE Software Ecosystems:

* Sophisticated cutting-edge algorithms implemented by PhD
experts from different fields

* Packages independently implemented, maintained, and
released by different organizations and institutions

* Many packages constantly developed over many decades and
changes to programming models, computer architectures, etc.

* Many APPs (i.e. customers) need access to the latest versions
of some packages (e.g. driving research).

Example: Small ecosystem of
packages and applications

Motivating/example ecosystems:

* Trilinos: 68 native pkgs, 90 upstream TPLs (third party libraries), many critical downstream pkgs/apps
* CASL VERA: 18 repositories integrated with almost Cl, 10 upstream TPLs => TPLs #1 portability issue!
* SNL SIERRA: Uses 30+ upstream pkgs/TPLs (including Trilinos, PETSc, etc.)

* IDEAS xSDK: Trilinos, PETSc, SuperLU, HYPRE (and several upstream TPLs) and BER app codes

Challenges to Sustainable Ecosystems of CSE Software:

1. Lifecycle and software quality of individual packages: Is a package by itself ready to be used by
customers and participate in an ecosystem?

2. Sustainability of software packages: |s a package sustainable over long lifecycle?

3. Maintaining compatibility of packages in the ecosystem: Can the compatibility of interdependent
packages be maintained over decades and satisfy customer needs?

4. Building a compatible set of packages for a given application from source: Can a compatible set of
interdependent packages be effectively deployed to customers?

Roadmap for Sustainable CSE Software Ecosystems

1. Lifecycle and software quality of individual packages: Is a
package by itself ready to be used by customers and participate in
an ecosystem?

— Lean/Agile lifecycle for CSE software:
* Exploratory (EX) => Research Stable (RS) => Production
Growth (PG) => Production Maintenance (PM)
* Existing software grandfathered in using Legacy Software
Change Algorithm

2. Sustainability of software packages: |s a package sustainable over long lifecycle?
— Self-Sustaining Software: open-source license, strong automated tests, clean design/code,
minimal controlled internal and external dependencies (stopping at standards)
3. Maintaining compatibility of packages in the ecosystem: Can the compatibility of
interdependent packages be maintained over decades and satisfy customer needs?
— Continuous Integration (Cl) => e.g. Trilinos packages, Google online apps (5K+ developers)
— Almost Continuous Integration (ACI) => e.g. INL MOOSE, CASL VERA, SIERRA/Trilinos, ...
— Punctuated Releases => Semantic Versioning Standard X.Y.Z, sets of backward compatible
releases (i.e. fixed X, increment Y), buildable against multiple versions of upstream packages
4. Building a compatible set of packages for a given application from source: Can a
compatible set of interdependent packages be effectively deployed to customers?
— Build & Install wrappers around heterogeneous build systems (CMake, autotools, raw
makefiles, etc.) => e.g. CMake ExternalProject, Spack, PETSc --download-xxx, CASL VERA TPLs
— Uniform build system for all packages: => e.g. SNL SIERRA (replaced native build process with
new bjam files for 30+ TPLs), TriBITS/CMake (Trilinos, CASL VERA (Trilinos, SCALE/Exnihilo,
COBRA-TF, MPACT, ...)), Google online apps (2K+ projects)

Example: Maintaining Compatibility and Deploying
Packages Over Many Released Versions

Assumptions:
e Start out all compatible packages, version 1.0

* New releases on same cadence (e.g. every quarter/year, etc.)

* Upgrade to most current allowed version of upstream packages

* No coordination/staging between package developers or releases

* Package ‘A’ breaks backward compatibility with each release, all other

packages maintain backward compatibility

Release Set 1: A1,B1,C1,D1, E1, F1

Release Set 2: => All release against A1!

A2

B2: Al

C2: B1(Al), Al

D2: B1(Al)

E2: C1(B1(A1), A1), Al

F2: E1(C1(B1 (A1), A1), A1), D1(B1 (A1), C1(B1 (A1),
Al), Al

Release Set 3: => Can’t all use A2!

A3

B3: A2

C3: B2(A1), A2 => Al

D3: B2(A1)

E3: C2(B1(A1), A1), A2 => Al

F3: E2(C1(B1(A1), A1), A1), D2(B1(A1), C2(B1(A1),
Al), A2 => B2, Al

Release Set 4: => Most stuck with A1 or A2!

Ad
B4: A3

C4: B3(A2), A3 => A2

D4: B3(A2)

E4: C3(B2(A1), A1), A3 => Al

F4: E3(C2(B1(A1), A1), A1), D3(B2(A1)), C3(B2(A1),
A1), A3 => B2, Al

Release Set 5: => Five versions of A in use!

A5
B5: A4

C5: B4(A3), Ad => A3

D5: B4(A3)

E5: C4(B3(A2, A2), Ad => A2

F5: E4(C3(B2(A1), Al), A1), D4(B3(A2)), C4(B3(A2), A2), Ad =>
D3, C3, B2, Al

Developers for Package A have to support
current and 4 prior releases!

Some downstream customers stuck with very
old versions of some packages! S QAR

