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Overview of CSE Software Ecosystem Challenges

Overview of CSE Software Ecosystems:

* Sophisticated cutting-edge algorithms implemented by PhD
experts from different fields

* Packages independently implemented, maintained, and
released by different organizations and institutions

* Many packages constantly developed over many decades and
changes to programming models, computer architectures, etc.

* Many APPs (i.e. customers) need access to the latest versions
of some packages (e.g. driving research).

Example: Small ecosystem of
packages and applications

Motivating/example ecosystems:

* Trilinos: 68 native pkgs, 90 upstream TPLs (third party libraries), many critical downstream pkgs/apps
* CASL VERA: 18 repositories integrated with almost Cl, 10 upstream TPLs => TPLs #1 portability issue!
* SNL SIERRA: Uses 30+ upstream pkgs/TPLs (including Trilinos, PETSc, etc.)

* IDEAS xSDK: Trilinos, PETSc, SuperLU, HYPRE (and several upstream TPLs) and BER app codes

Challenges to Sustainable Ecosystems of CSE Software:

1. Lifecycle and software quality of individual packages: Is a package by itself ready to be used by
customers and participate in an ecosystem?

2. Sustainability of software packages: |s a package sustainable over long lifecycle?

3. Maintaining compatibility of packages in the ecosystem: Can the compatibility of interdependent
packages be maintained over decades and satisfy customer needs?

4. Building a compatible set of packages for a given application from source: Can a compatible set of
interdependent packages be effectively deployed to customers?




Roadmap for Sustainable CSE Software Ecosystems

1. Lifecycle and software quality of individual packages: Is a
package by itself ready to be used by customers and participate in
an ecosystem?

— Lean/Agile lifecycle for CSE software:
*  Exploratory (EX) => Research Stable (RS) => Production
Growth (PG) => Production Maintenance (PM)
*  Existing software grandfathered in using Legacy Software
Change Algorithm

2. Sustainability of software packages: |s a package sustainable over long lifecycle?
— Self-Sustaining Software: open-source license, strong automated tests, clean design/code,
minimal controlled internal and external dependencies (stopping at standards)
3. Maintaining compatibility of packages in the ecosystem: Can the compatibility of
interdependent packages be maintained over decades and satisfy customer needs?
— Continuous Integration (Cl) => e.g. Trilinos packages, Google online apps (5K+ developers)
— Almost Continuous Integration (ACI) => e.g. INL MOOSE, CASL VERA, SIERRA/Trilinos, ...
— Punctuated Releases => Semantic Versioning Standard X.Y.Z, sets of backward compatible
releases (i.e. fixed X, increment Y), buildable against multiple versions of upstream packages
4. Building a compatible set of packages for a given application from source: Can a
compatible set of interdependent packages be effectively deployed to customers?
— Build & Install wrappers around heterogeneous build systems (CMake, autotools, raw
makefiles, etc.) => e.g. CMake ExternalProject, Spack, PETSc --download-xxx, CASL VERA TPLs
—  Uniform build system for all packages: => e.g. SNL SIERRA (replaced native build process with
new bjam files for 30+ TPLs), TriBITS/CMake (Trilinos, CASL VERA (Trilinos, SCALE/Exnihilo,
COBRA-TF, MPACT, ...)), Google online apps (2K+ projects)




Example: Maintaining Compatibility and Deploying
Packages Over Many Released Versions

Assumptions:
e Start out all compatible packages, version 1.0

* New releases on same cadence (e.g. every quarter/year, etc.)

* Upgrade to most current allowed version of upstream packages

* No coordination/staging between package developers or releases

* Package ‘A’ breaks backward compatibility with each release, all other

packages maintain backward compatibility

Release Set 1: A1,B1,C1,D1, E1, F1

Release Set 2: => All release against A1!

A2

B2: Al

C2: B1(Al), Al

D2: B1(Al)

E2: C1(B1(A1), A1), Al

F2: E1(C1(B1 (A1), A1), A1), D1(B1 (A1), C1(B1 (A1),
Al), Al

Release Set 3: => Can’t all use A2!

A3

B3: A2

C3: B2(A1), A2 => Al

D3: B2(A1)

E3: C2(B1(A1), A1), A2 => Al

F3: E2(C1(B1(A1), A1), A1), D2(B1(A1), C2(B1(A1),
Al), A2 => B2, Al

Release Set 4: => Most stuck with A1 or A2!

Ad
B4: A3

C4: B3(A2), A3 => A2

D4: B3(A2)

E4: C3(B2(A1), A1), A3 => Al

F4: E3(C2(B1(A1), A1), A1), D3(B2(A1)), C3(B2(A1),
A1), A3 => B2, Al

Release Set 5: => Five versions of A in use!

A5
B5: A4

C5: B4(A3), Ad => A3

D5: B4(A3)

E5: C4(B3(A2, A2), Ad => A2

F5: E4(C3(B2(A1), Al), A1), D4(B3(A2)), C4(B3(A2), A2), Ad =>
D3, C3, B2, Al

Developers for Package A have to support
current and 4 prior releases!

Some downstream customers stuck with very
old versions of some packages! S QAR




