
A-Opportunities from Improved CSE SW
Sustainability and Productivity

Lead: Jack Dongarra
Presenter: Jeffrey Vetter / Walter Scarborough

Scribe: Vijay Mahadevan

Defining Sustainability and Productivity

● Sustainability: “Preserving the function of a system over a defined timespan.”
○ Affordable, maintainable over many decades
○ Can be extended and maintained by developers other than the initial developers
○ Can be refactored at reasonable cost for changes in programming models, architectures, etc.
○ Overlap with reproducibility and verification
○ Maintaining the ability to satisfy growing requirements
○ Abstraction and API to adapt with hardware changes (performance portability)
○ Extensibility for new feature regimes easily (sustain and improve productivity)
○ Library vs. application concerns for sustainability

Productivity

Draft definition, taken from DOE
Workshop Report: Software
Productivity for Extreme-Scale
Science, Jan 2014, see http://www.orau.
gov/swproductivity2014/reference.htm

Software productivity is a key component of
overall scientific productivity. Scientific
productivity can be considered an overall
measure of quality of the complete process of
achieving mission-driven science results.
Scientific productivity includes software
productivity (effort, time, and cost for
software development, maintenance, and
support), execution-time productivity
(efficiency, time, and cost for running scientific
workloads), workflow and analysis
productivity (effort, time, and cost for the
overall cycle of simulation and analysis), and
the value of computational output in terms
of grand challenge scientific discovery.

http://www.orau.gov/swproductivity2014/reference.htm
http://www.orau.gov/swproductivity2014/reference.htm
http://www.orau.gov/swproductivity2014/reference.htm

Upsides/Opportunities

Impact of good software is huge since potentially we can shorten the design cycle from physical modeling and

exploration to real scientific solution

● Rapid prototyping and deployment of new ideas

● Verification and validation of complex software systems

● Reliable code with reproducibility constraints

● Reusability

● Solve more complex scientific problems

● Solve existing scientific problems more quickly

● Shared performance improvements

● Outreach, workforce, education

● Solve more difficult science problems, with less effort, more quickly (both in time to initially run the code and
making the code finish faster).

● Development of common interfaces promotes interoperability between software
a. Lesser learning curve, saves time and money
b. More resources are available to do real science
c. Quality of upstream/downstream packages improve due to increased testing and user adoption

● Can considerably improve interaction between the industry and academic/lab communities
● More approachable from a novice user perspective through ease of tool usage

Challenges

● There needs to be a balance between maintaining vs. creating radical new solutions

● Disconnect between scientists and software developers can severely impede productivity

● People issue: software, physics and math background in a single person is hard; teams provide combinations
but clear communication of priorities can be difficult

● Co-design of software developers and mathematicians critical

● Social issue: not written here syndrome

● Marketing and education important for new users to adopt sustainable software

How can funding agencies help?

● Specific RFPs for sustainable software as opposed to exploring new research ideas

● Invest funding for software capitalization to get reusable software to user consumption

● Greater recognition of software publications

● Higher weightage of reproducible software based research

● Data Management Plan: encourage more open, verifiable research

● How should research software be transitioned to production software?

● Software sustainability plan (NSF, and in broader community): plan for creating a dedicated or derived user
base user base so that provided funding helps build new sustainable communities

● Government could play a role in propagation of new standards, policies for software development

● Encourage education and tutorials goals for improving community around sustainable software

Participants

● Jeffrey Vetter, ORNL and GATech
● Jack Dongarra, U of TN and ORNL
● Thomas Sterling, Indiana U
● Roscoe Bartlett, ORNL
● Albert Reuther, MIT-Lincoln Lab
● Vijay Mahadevan, ANL
● Lois Curfman McInnes, ANL
● Irina Demeshko, SNL
● Sartaj Sahni, UFlorida
● Grady Campbell, domain-specific.com
● Joe Laiosa, Navair
● John D. McGregor
● Timo Heister, Clemson
● Charles Ferenbaugh, LANL
● Walter Scarborough, TACC at University of Texas
● Karl Rupp, TU Wien

