
Challenges to Deploying a Software Ecosystem for Science

Karen Tomko (ktomko@osc.edu), Scott Brozell (srb@osc.edu)
Ohio Supercomputer Center

Bibliography:
1.  Agrawal, K., Fahey, M., McLay, R., and James, D. "User Environment

Tracking and Problem Detection with XALT." the First International
Workshop on HPC User Support Tools (HUST '14). 2014.

2.  Cuff, James. "part two: scientific software as a service sprawl." jcuff.net. 7
19, 2012. http://blog.jcuff.net/2012/07/part-two-scientific-software-as-
service.html (accessed 10 5, 2015).

3.  Evans, T., Barth, W., Browne, J., DeLeon, R., Furlani, T, Gallo, S., Jones, M.
and Patra, A. "Comprehensive Resource Use Monitoring for HPC Systems
with TACC Stats." the First International Workshop on HPC User Support
Tools (HUST '14). 2014.

4.  Gamblin, T., LeGendre, M, Collette, M, Lee, G., Moody, A., de Supinski, B.
and Futral, S. "The Spack Package Manager: Bringing Order to HPC
Software Chaos." to appear in the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC15). Austin,
2015.

5.  Geimer, M., Hoste, K. and McLay, R. "Modern scientific software
management using EasyBuild and Lmod." Proceedings of the First
International Workshop on HPC User Support Tools (HUST '14). 2014.

6.  Jones, N and Fahey, M. SWTools. 1 1, 2011. https://www.olcf.ornl.gov/
center-projects/swtools/ (accessed 10 5, 2015).

7.  Layton, J. "Lmod - Alternative Environment Modules." AdminHPC. 2015.
http://www.admin-magazine.com/HPC/Articles/Lmod-Alternative-
Environment-Modules (accessed 10 5, 2015).

8.  McLay, R. Lmod: Environmental Modules System. https://
www.tacc.utexas.edu/research-development/tacc-projects/lmod (accessed
10 5, 2015).

9.  Palmer, J., et. al. "OpenXDMoD: A Tool for the Comprehensive Management
of High-Performance Computing Resources." Computing in Science &
Engineering 17, no. 4 (2015): 52-62.

Introduction:
A wide range of software with complex dependencies and recurring
releases must be maintained to enable researchers to productively carry
out their science on a shared research computing resource. As new
communities with new science needs start accessing shared resources
the software requirements grow. The term software sprawl has been
used to describe this situation (Cuff 2012).

Managing this sprawl involves:
•  Managing 10s to 100s of software installations, ranging from compilers,

commercial applications, numerical libraries, open source software
frameworks, etc.

•  Accommodating complex dependencies and version sensitivities
among packages.

•  Living with a lack of standards and wide range of quality of software
build systems, testing frameworks, documentation, etc.

•  Having a limited set of tools to help manage and automate this
process.

•  Supporting complex license/access restrictions.
•  Supporting multiple hardware and system software configurations.
•  Emerging requirements to deploy gateways and servers.

Approaching management of the software environment and its inevitable
sprawl must be done in a systematic way. As resource providers we
must balance the goal of providing a state-of-the-art software
environment with the need to provide for science reproducibility and
software stability. Our software policies, purchases and support
decisions are crucial to the success and productivity of our researchers.
How do we move from the ad hoc ecosystems that most of us currently
deploy to managed, well-tested, robust ecosystems that can quickly
evolve to meet new demands?

OSC Software by the Numbers:
Complexity of target hardware:
•  Number of production Linux clusters? 3
•  Number of types of CPU processors? 3
•  Number of types of Accelerators/co-processors? 4
•  Total number of node configurations? 8
•  Number of generations of Interconnect? 3

Complexity of Software:
•  Number of Commercial Packages? 20
•  Number Compiler Families? 3
•  Number of MPI Families? 2.5
•  Number of Software Packages on Oakley cluster? 116
•  Average number of versions per package on Oakely? 2.6

Some of the numbers that we don’t know:
•  How many times was a particular package and version accessed?
•  How many Gflops for a package on a benchmark problem?
•  How many help desk questions regarding a given software?

A Typical Package at OSC:

System Usage by Package :
A Snapshot from Dec 2014 to March 2014

A Wishlist:
A Robust Package Manager for HPC
•  Support for complex dependencies
•  Support for multiple versions to co-exist
•  Standardized build systems
Test Suites:
•  Beyond examples
•  Automated tests with success and failure notification
•  Production scale models/test cases
•  Correctness and perfomance testing
Fine Grained Usage Data:
•  At the granularity of a particular version
•  Record library use
•  Additional needs for licensed codes
More Tools Development:
•  Along the lines of: Lmod, TACC Stats, Spack, XALT, EasyBuild

Conclusion:
The software sustainability challenge extends beyond developing
quality software packages. There is a need to ensure that these
packages can be easily and effectively deployed on shared
resources so that they are readily available to a wide community of
users. Increasing ease of deployment, may just increase adoption
rate, result in a larger user community and possibly, improve
sustainability.

