
Best Practices For Scientific Codebases

Version Control

Installation Analysis Tools

Open Source

Testing

Design
• Keep most code in one repository
• Not branching can endanger

stability, requires better
discipline

• Branches become exponentially
harder to merge over time

• History compression is useful for
non-trivial feature contribution

• Bisection can identify cause of
regression

• Annotation can provide reasoning
for parts of code

• Should be automated, either
periodic or per change

• Compare to external results, not
just your own past results

• Check strong properties
(convergence rate, accuracy)

• Include analysis tools in automated
testing

• Test configurations: operating
systems, compilers, parallelism

• Installation should come with
detailed instructions

• Installation is the first impression
• Try to make dependencies

optional (e.g. MPI, threads)
• Incremental compilation should

be fast

• Static analysis has great
potential, easiest and earliest
way to catch bugs

• Dynamic analysis crucial for
eliminating hard memory bugs

• Profilers needed to guide
optimization

• Custom analysis built into code
can also help

• Keep most code open
• External user input can improve

stability and design
• Default to Github, Bitbucket, etc.
• Try to accept contributions, with

revision as needed
• Github helps organize

collaborators

open foundation

closed application

Dan Ibanez, Rensselaer Polytechnic Institute

• Include a design document which is
independent of the source code

• Algorithms from literature should
be cited, preferably in source

• Code structure will reflect human
organization structure, accept and
prepare for this

• Consider compatibility with
languages, programming models,
build system

ibaned@rpi.edu
http://github.com/SCOREC/core
http://scorec.rpi.edu

	Slide Number 1

