Best Practices For Scientific Codebases

Dan Ibanez, Rensselaer Polytechnic Institute

Version Control

Keep most code in one repository
Not branching can endanger
stability, requires better
discipline

Branches become exponentially
harder to merge over time
History compression is useful for
non-trivial feature contribution
Bisection can identify cause of
regression

Annotation can provide reasoning
for parts of code

Installation

Installation should come with
detailed instructions

Installation is the first impression
Try to make dependencies
optional (e.g. MPI, threads)
Incremental compilation should
be fast

Design

Include a design document which is
independent of the source code
Algorithms from literature should
be cited, preferably in source

Code structure will reflect human
organization structure, accept and
prepare for this

Consider compatibility with
languages, programming models,
build system

Testing

Should be automated, either
periodic or per change
Compare to external results, not

just your own past results

Check strong properties
(convergence rate, accuracy)
Include analysis tools in automated

Open Source

Keep most code open

External user input can improve
stability and design

Default to Github, Bitbucket, etc.
Try to accept contributions, with
revision as needed

Github helps organize
collaborators

Aclosed application

Analysis Tools

Static analysis has great
potential, easiest and earliest
way to catch bugs

Dynamic analysis crucial for
eliminating hard memory bugs
Profilers needed to guide
optimization

Q)

Open Source
Initiative

testing Custom analysis built into code
Test configurations: operating can also help
ibaned@rpi.edu systems, compilers, parallelism m}

http://github.com/SCOREC/core
http://scorec.rpi.edu



	Slide Number 1

