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Ø Reliability is a major challenge for future large-scale 

parallel systems!

Ø  Software modularity is pervasive!
!

q  Emphasizes  independence and generality of each layer!
q  Adopted in many application domains including scientific 

applications!
q  Precludes classes of end-to-end program transformations 

targeting robustness or performance!

!
!
!
!

Ø Goal: resilience becomes an end-to-end property 
of software systems
q  Requires unified end-to-end integration throughout the 

software stack!
q  Fault mechanisms that adjust error handling based on the 

impact of computation result or runtime context!
q  Fault recovery that is both context and accuracy aware!
q  Program analyses to quantify and ensure error handling 

coverage!
q  Code rewriting techniques to stitch independent and disjoint 

error handling!
!

Ø  Need for a unified approach to achieve resilience at 
scale that considers:!

q  Library or (multi) language specific resilience mechanisms!
q  Problem domain!
q  The application and associated software stack!
q  Appropriate performance and semantic abstractions!
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Ø Can provide (semi-) automated support for!
q  Analysis of software written using multiple languages!
q  Guarantees for error handling and recovery coverage!
q  Description of error behavior and expectations!
q  Stand-alone development of resilient layers or libraries!
q  Low overhead fault detection mechanisms!
q  Specialization of resilience mechanisms!
q  Integration of independent mechanisms for error 

propagation and application recovery!

Ø   Demonstrations!
q  Automated testing using concolic testing – up to 100K 

lines of code!
q  Active testing for C, Java– milions of LoC!
q  Active testing for UPC – milions of LoC, at 8,192 cores, 

with 25% overhead!

Ø  Characteristics!
q  Increased precision – report only interesting problems!
q  Scalability with LoCs and input!
q  Provide for guided exploration of program paths!

!
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Ø  Error Propagation Bugs!
1.  Unchecked error is overwritten 

with a new value !
!

2.  Variable storing unchecked error 
goes out of scope!

!

3.  Unchecked error returned by 
function is not saved by caller!

!
!

1	
  int	
  txCommit(...)	
  {	
  
2	
  	
  	
  ...	
  
3	
  	
  	
  if	
  (isReadOnly(...))	
  {	
  
4	
  	
  	
  	
  	
  rc	
  =	
  -­‐EROFS;	
  
5	
  	
  	
  	
  	
  ...	
  
6	
  	
  	
  	
  	
  goto	
  TheEnd;	
  
7	
  	
  	
  }	
  ...	
  
8	
  	
  	
  if	
  (rc	
  =	
  diWrite(...))	
  
9	
  	
  	
  	
  	
  txAbort(...);	
  
10	
  	
  TheEnd:	
  return	
  rc;	
  
11	
  }	
  
12	
  
13	
  int	
  diFree(...)	
  {	
  
14	
  	
  	
  ...	
  
15	
  	
  	
  rc	
  =	
  txCommit(...);	
  
16	
  	
  	
  ...	
  
17	
  	
  	
  return	
  0;	
  //rc	
  out	
  of	
  
18	
  }	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  scope	
  	
  

Out-of-scope error in IBM JFS 

rc not acknowledged by error 
reporting/recovering code!

Ø Analyzed over 1.5 MLOC in 
the Linux Kernel!

!
!

Ø  Found hundreds of bugs!
!
!

312 confirmed bugs in FS (CIFS, IBM 
JFS, ext3, ext4, and ReiserFS)!
!
!

56 bad error-pointer interactions!
!

!
Over 1700 undocumented error-
code instances!

!
!
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Ø Compilers instrument code for dynamic analysis!
!

q  Ability to select the optimal placement and recovery 
strategy!
§  Increasing resilience granularities (e.g., statement, 

basic block, loop nest, function, etc.)!

q  Execution starts optimistically with coarse grained 
mechanisms for both logging and error detection!

q  Code is switched to finer grained and more precise 
mechanisms when an error occurs!

q  Composability of error mechanisms developed 
independently in disjoint software layers!

q  Ability to handle codes using multiple programming 
languages!

!
!

Error Propagation Bug 
Example:!


