
Berkeley Parlab

!
Ø Reliability is a major challenge for future large-scale

parallel systems!

Ø  Software modularity is pervasive!
!

q  Emphasizes independence and generality of each layer!
q  Adopted in many application domains including scientific

applications!
q  Precludes classes of end-to-end program transformations

targeting robustness or performance!

!
!
!
!

Ø Goal: resilience becomes an end-to-end property
of software systems
q  Requires unified end-to-end integration throughout the

software stack!
q  Fault mechanisms that adjust error handling based on the

impact of computation result or runtime context!
q  Fault recovery that is both context and accuracy aware!
q  Program analyses to quantify and ensure error handling

coverage!
q  Code rewriting techniques to stitch independent and disjoint

error handling!
!

Ø  Need for a unified approach to achieve resilience at
scale that considers:!

q  Library or (multi) language specific resilience mechanisms!
q  Problem domain!
q  The application and associated software stack!
q  Appropriate performance and semantic abstractions!

!

Costin Iancu (LBL), Cindy Rubio-González (UC Davis), and Koushik Sen (UC Berkeley)!

Manipulating Errors in Production Scientific Computing Codes!

1. Motivation 3. Static Analysis: Error Propagation Analysis [PLDI’09, PASTE’10, ISSTA’11, ICSE’15]

4. Dynamic Analysis 5. Static + Dynamic
Operating System

Runtime System

Domain Specific Libraries
Application

Software!
Stack!

!

!

cciancu@lbl.gov, crubio@ucdavis.edu, ksen@cs.berkeley.edu!
!

Ø Can provide (semi-) automated support for!
q  Analysis of software written using multiple languages!
q  Guarantees for error handling and recovery coverage!
q  Description of error behavior and expectations!
q  Stand-alone development of resilient layers or libraries!
q  Low overhead fault detection mechanisms!
q  Specialization of resilience mechanisms!
q  Integration of independent mechanisms for error

propagation and application recovery!

Ø  Demonstrations!
q  Automated testing using concolic testing – up to 100K

lines of code!
q  Active testing for C, Java– milions of LoC!
q  Active testing for UPC – milions of LoC, at 8,192 cores,

with 25% overhead!

Ø  Characteristics!
q  Increased precision – report only interesting problems!
q  Scalability with LoCs and input!
q  Provide for guided exploration of program paths!

!
!

Find Error-
Code

Mismatches Find Bad
Error/Pointer
Interactions Find Error-

Propagation
Bugs

Solve the
dataflow
problem

Extract
documented

errors

Source Code

Bug
Reports

Linux

CIL and LLVM
front ends

BDDs encode
weights

WALi library

WPDS witnesses

Sample paths

Construct
WPDS

Documentation Man
pages

Python

Ø  Error Propagation Bugs!
1.  Unchecked error is overwritten

with a new value !
!

2.  Variable storing unchecked error
goes out of scope!

!

3.  Unchecked error returned by
function is not saved by caller!

!
!

1	
 int	
 txCommit(...)	
 {	

2	
 	
 	
 ...	

3	
 	
 	
 if	
 (isReadOnly(...))	
 {	

4	
 	
 	
 	
 	
 rc	
 =	
 -­‐EROFS;	

5	
 	
 	
 	
 	
 ...	

6	
 	
 	
 	
 	
 goto	
 TheEnd;	

7	
 	
 	
 }	
 ...	

8	
 	
 	
 if	
 (rc	
 =	
 diWrite(...))	

9	
 	
 	
 	
 	
 txAbort(...);	

10	
 	
 TheEnd:	
 return	
 rc;	

11	
 }	

12	

13	
 int	
 diFree(...)	
 {	

14	
 	
 	
 ...	

15	
 	
 	
 rc	
 =	
 txCommit(...);	

16	
 	
 	
 ...	

17	
 	
 	
 return	
 0;	
 //rc	
 out	
 of	

18	
 }	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 scope	
 	

Out-of-scope error in IBM JFS

rc not acknowledged by error
reporting/recovering code!

Ø Analyzed over 1.5 MLOC in
the Linux Kernel!

!
!

Ø  Found hundreds of bugs!
!
!

312 confirmed bugs in FS (CIFS, IBM
JFS, ext3, ext4, and ReiserFS)!
!
!

56 bad error-pointer interactions!
!

!
Over 1700 undocumented error-
code instances!

!
!

A B C A

B

C A B C + + = 2100 distinct problems

Ø Compilers instrument code for dynamic analysis!
!

q  Ability to select the optimal placement and recovery
strategy!
§  Increasing resilience granularities (e.g., statement,

basic block, loop nest, function, etc.)!

q  Execution starts optimistically with coarse grained
mechanisms for both logging and error detection!

q  Code is switched to finer grained and more precise
mechanisms when an error occurs!

q  Composability of error mechanisms developed
independently in disjoint software layers!

q  Ability to handle codes using multiple programming
languages!

!
!

Error Propagation Bug
Example:!

