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3. Static Analysis: Error Propagation Analysis [PLDI’09, PASTE’10, ISSTA’11, ICSE’15]
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4. Dynamic Analysis 5. Static + Dynamic

> Goal: resilience becomes an end-to-end property » Compilers instrument code for dynamic analysis

of software systems » Can provide (semi-) automated support for

Q Requires unified end-to-end integration throughout the O Analysis of software written using multiple languages 0 Abilty to select the optimal placement and recovery
software stack 0 Guarantees for error handling and recovery coverage strategy ' N N

QO Fault mechanisms that adjust error handling based on the Q Description of error behavior and expectations * Increasing resilience granularities (e.g., statement,
impact of computation result or runtime context 0 Stand-alone development of resilient layers or libraries basic block, loop nest, function, etc.)

O Fault recovery that is both context and accuracy aware O Low overhead fault detection mechanisms

Q Program analyses to quantify and ensure error handling Q Spemah_zahon_of resilience mechan_lsms QO Execution starts optimistically with coarse grained
coverage O Integration of independent mechanisms for error mechanisms for both logging and error detection

O Code rewriting technigues to stitch independent and disjoint propagation and application recovery
error handling > Demonstrations 0O Code is switched to finer grained and more precise

mechanisms when an error occurs
O Automated testing using concolic testing — up to 100K

» Need for a unified approach to achieve resilience at lines of code o
scale that considers: 0 Active testing for C, Java— milions of LoC

. X . N ) Q Active testing for UPC — milions of LoC, at 8,192 cores,
Q Library or (multi) language specific resilience mechanisms with 25% overhead

Q Problem domain a
QO The application and associated software stack » Characteristics
O Appropriate performance and semantic abstractions - . .

QO Increased precision — report only interesting problems

Q Scalability with LoCs and input
Q Provide for guided exploration of program paths

Composability of error mechanisms developed
independently in disjoint software layers

Ability to handle codes using multiple programming
languages




