1. Motivation

Manipulating Errors in Production Scientific Computing Codes

Costin lancu (LBL), Cindy Rubio-Gonzalez (UC Davis), and Koushik Sen (UC Berkeley)
cciancu@Ilbl.gov, crubio@ucdavis.edu, ksen@cs.berkeley.edu

<
A
freeeee "'|

BERKELEY LAB

Lawrence Berkeley National Laboratory

3. Static Analysis: Error Propagation Analysis [PLDI’09, PASTE’10, ISSTA’11, ICSE’15]

Documentation | Man » Error Propagation Bugs Error Propagation Bug
T . . i i Example:
> Reliabilit hall for f [- | pages 1. Unchecked error is overwritten
Y IS @ major cnhallenge for uture arge-scale Construct CIL and LLVM with a new value
an T e . N\
1 int txC (...
paraIIeI systems WEDS front ends S 2. Variable storing unchecked error 2 “..,X (o2 {
L) R e Python goes out of scope 3 if (isReadOnly(...)) {
> Software modularity is pervasive Solve the BQD;tencode errore 3. Unchecked error retured by 4 o emnors;
O Emphasizes independence and generality of each layer datifllow \welgnts function is not saved by caller s X goto TheEnd;
a :g;l?ctzﬁ;:smany application domains including scientific pro em WAL library . iflir.‘c T,
H 9 txAbort(...);
QO Precludes classes of end-to-end program transformations PP l ,,,,,,,, N l l > A”a'Yzed over 1.5 MLOC in 10 TheEnd: return rc;
targeting robustness or performance { Find Error- | Find Bad Find Error- the Linux Kernel E }
Propagation | Error/Pointer Code » Found hundreds of bugs o 1"‘.:.‘?1”9’3(”-) {
@ Bugs Interactions @Mismatches 15 rc = txCommit(...);
———————————————————— - | | @ 312 confirmed bugs in FS (CIFS, IBM 16 ...
i 17 return @; //rc out of
Bug WPDS witnesses JFS, ext3, ext4, and ReiserFS) . A
Reports y -
- Sample paths 56 bad error-pointer interactions Outclacope sror in 18M JFS
Software re not acknowledged by error
+ es _ i i !
Stack @ + . @ =2100 distinct problems @ Over 1700 undocumented error: reporting/recovering code!

code instances

Operating System

4. Dynamic Analysis 5. Static + Dynamic

> Goal: resilience becomes an end-to-end property » Compilers instrument code for dynamic analysis

of software systems » Can provide (semi-) automated support for

Q Requires unified end-to-end integration throughout the O Analysis of software written using multiple languages 0 Abilty to select the optimal placement and recovery
software stack 0 Guarantees for error handling and recovery coverage strategy ' N N

QO Fault mechanisms that adjust error handling based on the Q Description of error behavior and expectations * Increasing resilience granularities (e.g., statement,
impact of computation result or runtime context 0 Stand-alone development of resilient layers or libraries basic block, loop nest, function, etc.)

O Fault recovery that is both context and accuracy aware O Low overhead fault detection mechanisms

Q Program analyses to quantify and ensure error handling Q Spemah_zahon_of resilience mechan_lsms QO Execution starts optimistically with coarse grained
coverage O Integration of independent mechanisms for error mechanisms for both logging and error detection

O Code rewriting technigues to stitch independent and disjoint propagation and application recovery
error handling > Demonstrations 0O Code is switched to finer grained and more precise

mechanisms when an error occurs
O Automated testing using concolic testing — up to 100K

» Need for a unified approach to achieve resilience at lines of code o
scale that considers: 0 Active testing for C, Java— milions of LoC

. X . N) Q Active testing for UPC — milions of LoC, at 8,192 cores,
Q Library or (multi) language specific resilience mechanisms with 25% overhead

Q Problem domain a
QO The application and associated software stack » Characteristics
O Appropriate performance and semantic abstractions - . .

QO Increased precision — report only interesting problems

Q Scalability with LoCs and input
Q Provide for guided exploration of program paths

Composability of error mechanisms developed
independently in disjoint software layers

Ability to handle codes using multiple programming
languages

