
How to organize successful
Scientific Software Projects?

Wolfgang Bangerth (Texas A&M), Timo Heister∗ (Clemson University)
* heister@clemson.edu

Abstract

Software today provides the foundation for research in essentially all disciplines of the sciences and engineering,
and in many cases the software packages are developed by lose collaborations of people who release their
contributions under open source licenses.
Here, we are collecting necessary ingredients for successful scientific software projects to answer the questions:

1. What makes some projects successful (user base, longevity, funding) and others not?

2. How can we learn from successful projects? What are some best practices?

This poster is a summary of the paper [BH13] and a lot of the lessons come from us being two of the main
developers of the open source finite element library deal.II [BHH+15] and the developers of the open source
mantle convection community code ASPECT [BH+15, KHB12].

Overarching goals

Promote community growth

Save developer time

Engineer for maintainability

1. Quality

Provide promised functionality

Provide reasonably bug free code

Easy setup/installation

Goal: acquire/retain users

Best practices:

1. Aim for “it just works”

2. Promised functionality more important than features

3. Avoid bugs using infrastructure (see 4.)

2. Documentation

Good documentation is crucial

Forms: manuals, reference documentation
(modules/classes/functions), tutorials, Wikis, FAQs, readme

But also: mailing lists (and archives), code comments, training
videos, private emails, lectures, conversations

Best practices:
1. Document on all levels:

high level overview of library (what? why? how?)
complete examples in tutorial form
high: module level documentation, how classes interact
medium: class level
low: functions, their parameters, pre/post conditions
internal: algorithmic choices inside functions
installation instructions

2. Start early:
very time intensive
writing after the fact is unrealistic
write documentation first or during development

3. Consider scalability:
can only help/train limited number of individuals
developer time doesn’t scale (can not help each user individually)
consider documentation forms that scale

4. Avoid out-of-date documentation:
is worse than no documentation
consider forms that are easy to update (not books or email archives)
extract documentation from code to keep code and doc close (doxygen)

5. Consider all forms
weigh pros/cons, choose appropriately
combine as needed

6. Consider simple ways to report/fix documentation issues

3. Building a community

Goals: grow community to survive

Need to attract external, unpaid developers for
sustainability

Dynamic community:
user→ contributor→ maintainer

Best practices:

1. Be welcoming, friendly, open, social and interact with
humility, respect, and trust

2. Goal: maximize user base

3. Make transition to contributor as easy as possible
(“lowering the bar”)

4. Provide and highlight incentives (give credit, show
appreciation, workshop invitations, . . . )

4. Technical aspects

Goals: save developer time, make contributions easier

Invest in supporting infrastructure, automation

Technical software design: modularity, extensibility, re-usability

Best practices:

1. Modular design by providing modules that can be used/recombined/amended

2. Have unit and integration tests

3. Establish a good contribution/review workflow (e.g. github pull requests)

4. Continuous integration with automated testing (https://travis-ci.org,
https://www.appveyor.com/, https://jenkins-ci.org/,
https://www.docker.com/, . . . )

5. Support many different platforms/compilers (code quality, reach)

6. Implement performance testing

7. Use scripting for automation: indentation, configuration, releases

5. Misc

Other reasons for success:

Timing vs. competitors

Superior features

Backward compatibility

Licensing

Poster online

http://goo.gl/I3A1bZ

Bibliography

W. Bangerth and T. Heister.

What makes computational open source software libraries successful?

Computational Science & Discovery, 6:015010/1–18, 2013.

W. Bangerth, T. Heister, et al.

ASPECT: Advanced Solver for Problems in Earth’s ConvecTion, 2015.

http://aspect.dealii.org/.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin.

The deal.II library, version 8.3.

preprint, 2015.

M. Kronbichler, T. Heister, and W. Bangerth.

High accuracy mantle convection simulation through modern numerical methods.

Geophysical Journal International, 191:12–29, 2012.

Made for the Computational Science and Engineering Software Sustainability and Productivity Challenges (CSESSP) Workshop 2015. W. Bangerth was partially supported by the National Science Foundation under award OCI-1148116 as part of the Software Infrastructure for Sustained Innovation (SI2) program; and by the Computational
Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University of California – Davis. T. Heister was partially supported by National Science Foundation under award DMS-1522191, the Computational Infrastructure in Geodynamics initiative (CIG), through the

National Science Foundation under Award No. EAR-0949446 and The University of California – Davis.

heister@clemson.edu
https://travis-ci.org
https://www.appveyor.com/
https://jenkins-ci.org/
https://www.docker.com/
http://goo.gl/I3A1bZ

