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SDAV partners 

•  Constituents: 
•  SciDAC (1, 2) Scientific Data Management Center (Shoshani) 
•  (2) Visualization and Analytics Center for Enabling Technologies (Bethel) 
•  SciDAC (2) Institute for Ultrascale SciDAC Visualization (Ma) 
•  New: LANL, Kitware, … 

•  Portfolio: ongoing relationships with science teams, technologies, expertise 
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Outline 

•  Emerging challenges with Big Data in scientific 
domains 

•  Examples of current approaches and solutions 
•  Brief discussion on handling of experimental 

data (future challenges) 
 



 Scientific Data Management, Analysis, and 
Visualization means: 

•  Target Scientific Applications 
•  Climate 
•  Combustion 
•  Fusion 
•  Nuclear 
•  Accelerator design 
•  Cosmology 

•  Algorithms, techniques, and software 
•  Representing scientific data – data models, metadata 
•  Managing I/O – methods for removing I/O bottleneck 
•  Accelerating efficiency of access – data structures, indexing 
•  Facilitating data analysis – data manipulations for finding patterns and 

meaning in the data 
•  Visual analytics – help understand data visually 



A Typical Scientific Investigation Process 

•  Current practice – data intensive tasks 
•  Runs large-scale simulations on large supercomputers 

•  Dump data on parallel disk systems 

•  Export some of the data to archives 

•  Move data to users’ sites – usually selected subsets 

•  Perform data manipulations and analysis on mid-size clusters 

•  Collect experimental / observational data 

•  Move experimental / observational data to analysis sites 

•  Perform comparison of experimental/observational to validate 
simulations 

•  Iterate 



A typical Scientific Investigation 
lots of Data Movement (GBs – TBs) 
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Exascale Systems: Potential Architecture 

Systems 2009 2018 Difference 
System Peak 2 Pflop/sec 1 Eflop/sec O(1000) 
Power 6 Mwatt 20 Mwatt 
System Memory 0.3 Pbytes 32-64 Pbytes O(100) 
Node Compute 125 Gflop/sec 1-15 Tflop/sec O(10-100) 
Node Memory BW 25 Gbytes/sec 2-4 Tbytes/sec O(100) 
Node Concurrency 12 O(1-10K) O(100-1000

) 
Total Node Interconnect 
BW 

3.5 Gbytes/sec 200-400 Gbytes/
sec 

O(100) 

System Size (Nodes) 18,700 O(100,000-1M) O(10-100) 
Total Concurrency 225,000 O(1 billion) O(10,000) 
Storage 15 Pbytes 500-1000 Pbytes O(10-100) 
I/O 0.2 Tbytes/sec 60 Tbytes/sec O(100) 
MTTI Days O(1 day) From J. Dongarra, “Impact of Architecture and Technology for Extreme Scale on 

Software and Algorithm Design,” Cross-cutting Technologies for Computing at the 
Exascale, February 2-5, 2010. 



Scaling simulations generates  
a data volume challenge (PBs) 
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What Can be Done? 
•  Perform some data analysis and visualization on simulation machine (in-situ) 
•  Reduce Data and prepare data for further analysis (in-situ) 
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High-level diagram of  10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility 
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Typically 
analysis is 
performed on a 
separate 
cluster, after 
simulation has 
written to data 
to disk. 
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Co-analysis 
bypasses 
storage and 
processes 
data while 
simulation 
runs. 
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“In situ” analysis 
operates on data 
before it leaves the 
compute nodes. 
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Some Solutions are Emerging 

(1) In-situ Analysis and Visualization 

(2) In-situ Analysis Data reduction and Indexing 

(3) Monitoring simulations progress in real-time 

(4) I/O slows down the computation 

(5) Automated archival management 

(6) Selection of subsets based on content 

(7) Selective, reliable, and effective data movement 

(8) Tools for real-time analysis and visualization 

(9) Validation of models using experimental data (some) 

(10) Automated data provenance (some) 



Data Analysis 

•  Two fundamental aspects 
•  Pattern matching : Perform analysis tasks for finding known or 

expected patterns 
•  Pattern discovery: Iterative exploratory analysis processes of 

looking for unknown patterns or features in the data 

•  Ideas for the exascale 
•  Perform pattern matching  tasks in the simulation machine 

•  “In situ” analysis 
•  Prepare data for pattern discovery on the simulation machine, 

and perform analysis on mid-size analysis machine 
•  “In-transit” data preparation 
•  “Off-line” data analysis 



SDAV Organization 



The SDAV institute tools 

§  In Situ Processing and Code  
Coupling 

§  ADIOS 
§  Glean 

§  Indexing 
§  FastBit 

§  In Situ Data Compression 
§  ISABELLA 

§  Parallel I/O and File Formats 
§  PnetCDF 
§  BP-files 
§  HDF5 

Data	
  Management	
  tools	
  	
  

SDAV	
  Goals:	
  
§  to actively work with application teams to assist them in achieving breakthrough science 
§  to provide technical solutions in the data management, analysis, and visualization regimes that are 

broadly used by the computational science community running on Leadership Class Machines 
§  To use existing robust tools to the extent possible and develop/adapt tools on an as-needed basis 

Data	
  Analysis	
  tools	
  

§  Statistical and Data Mining 
Techniques  

§  NU-Minebench 
§  Importance-Driven Analysis 

Techniques  
§  Domain-Knowledge 

Directed 
§  Geometry Based 

§  Topological Methods  
§  In Situ Topology  
§  Feature-Based Analysis 
§  High-Dimensional 

Analysis 

Visualiza6on	
  tools	
  

§  Parallel visualization 
§  Visit 
§  ParaView 

§  VTK-m framework 
§  Flow Visualization Methods 
§  Rendering 
§  Ensembles, Uncertainty, and 

Higher-Dimensional Methods  



SDAV Technology Use in Leadership Applications 

Application Code Contact Allocation 
(M node hours) 

SDAV Technologies 

Astrophysics Chimera T. Mezzacappa 60 ADIOS, VisIt, Ultravis-V 

Astrophysics FLASH D. Lamb 80 PnetCDF, GLEAN, ROMIO, VisIt, VTK 
Astrophysics Maestro J. Bell 50 VisIt 
Astrophysics Enzo M. Norman 35 ParaView, VisIt 
Biology Nektar G. Karniadakis 50 ParaView 

Climate POP P. Jones 110 PnetCDF, ParaView, ROMIO 
Combustion S3D J. Chen 60 ADIOS, Dataspaces, Ultravis-V, Ultravis-P,  

ViSUS IDX, Topologika 

Combustion Boxlib J. Bell 60 VisIt, ADIOS, Topologika 
Combustion Nek5000 C. Frouzakis 150 VisIt 

Cosmology HACC S. Habib 150 ParaView, ROMIO, Ultravis-P 
Fusion GTC Z. Lin 35 ADIOS, DataTap, FastBit, Ultravis-V 
Fusion XGC C.S. Chang 50 ADIOS, Dataspaces, FastBit, Ultravis-V, VTK 

Fusion GTC-P W. Tang 58 ADIOS, Ultravis-V, Ultravis-P 
Plasma VPIC B. Daughton 30 PnetCDF, ParaView, ROMIO 
Nuclear Nek5000 P. Fischer 25 ROMIO, VisIt 



SDAV: 8 posters 
5 APPLICATION POSTERS 

Title: (Accelerator design application) 
 Scalable Data Management, Analysis and 
Visualization of Particle Accelerator 
Simulation Data 

 Presenter/POC: Oliver Ruebel, LBNL 
Title: (Climate application) 

Recent Achievements in Visual Data 
Exploration and Analysis for Climate 
Science 

 Presenter/POC: Wes Bethel, LBNL 
Title: (Combustion application) 

 SDAV Support to Combustion Research 
with Visualization, Analysis, and Data 
Movements 

 Presenter/POC: Attila Gyulassy, 
University of Utah  

Title: (Cosmology application) 
 Visual and Numerical Data Analysis of 
Large-Scale Structures in Cosmological 
Simulations 

 Presenter/POC: Tom Peterka, ANL 
  
 

Title: (Data Management area) 
 Technologies for Extreme-Scale Data 
Management 

 Presenter/POC: Rob Ross, ANL 
 Title: (Analysis area) 

 Advanced Data Analysis Techniques for 
Science Discovery 

 Presenter/POC: Valerio Pascucci, 
University of Utah 

 Title: (Visualization area) 
 Technologies for Scientific Visualization 
 Presenter/POC: James Ahrens, LANL 

  
 

3 TECHNOLOGY POSTERS 

Title: (Fusion application) 
 SDAV technologies for the next 
generation fusion techniques 

 Presenter/POC: Scott Klasky, ORNL 
  
 



EXAMPLE: 

 CAPTURING I/O FUNCTIONS  



ADIOS: Adaptable I/O System 
•  ADIOS: adaptable I/O framework 
•  Provides portable, fast, scalable, easy-to-use, 

metadata rich output with a simple API 
•  Allows plug-ins for different I/O implementations 
•  Abstracts the API from the method used for I/O 
•  Synchronous and asynchronous transports 
•  Insulates codes from underlying I/O system 
 
 
Reducing I/O variability 
Objectives: 
•  Utilize the maximum number of storage targets. 
•  Schedule the processes to avoid internal interference. 
•  Shift work from slower to faster storage targets for external 

interference. 
Impact: 
•  Improved I/O overhead in all simulation codes 

External 
metadata 
(XML file) Scientific codes 

ADIOS API 

D
A

R
T 

D
ataTap 

M
PI-IO 

PO
SIX I/O 

H
D

F-5 
P-N

etC
D

F 
Viz engines 
O

thers (plug-in) 

Buffering Schedule Feedback 

M
D

S+ 

Contact: Scott Klasky 



What else can be done when capturing I/O 

Code coupling with DataSpaces 
•  Virtual shared space 
•  Constructed on-the-fly on staging nodes 

•  Indexes data for quick access and retrieval 
•  Provides asynchronous coordination and 

interaction and realizes the shared-space 
abstraction 

•  In-space (online) data transformation and 
manipulations 

•  Decentralized data analysis in-the-space 

Real-time monitoring on a Dashboard 
•    Time-step data is captured and processed by a 
     workflow system  
•     Movies generated by a workflow  
•     Interactive vector plotting 

Imbed FastBit  indexing to find regions of  interest 
•    Set of regions with high electromagnetic potential 
     in a torus modeled by GTC 
•     Achieved speed up of 500-900 fold on magnetic coordinates 

Contact: Scott Klasky 

EVPath data streaming for monitoring and control 
•  Multilevel management hierarchy 
•  Runtime resource management for I/O pipelines 
 



EXAMPLE: 

FRAMEWORK FOR IMPROVING I/O AND  

IN SITU VISUALIZATION 



GLEAN 

25 

 Strong scaling performance for 1GB data 
movement from ALCF Intrepid Blue Gene/P. 
Strong scaling is critical as we move towards 
systems with increased core counts. 

 Co-visualization of a 3.3 billion element PHASTA 
simulation of an aircraft wing running on 160K cores of 
ALCF Intrepid Blue Gene/P using ParaView on 100 
nodes of ALCF Eureka analysis cluster enabled by 
GLEAN. 

    [Redesigning the vertical tail of a commercial jet could 
reduce jet fuel use by 0.5%, resulting in annual 
savings of $300 million] 

§  GLEAN is a flexible and extensible framework  to facilitate simulation-time data analysis and I/O 
acceleration. 

§  Features include: topology-aware data movement, asynchronous data staging and burst buffering, 
leverages application data models, scalable analysis algorithms and infrastructure (in situ, co 
processing, in flight). 

§  Scaled to entire ALCF infrastructure (160K BG/P Intrepid cores), achieved multi-fold I/O improvement 
for FLASH, and demonstrated in situ analysis.  

Contact: Rob Ross, V. Vishwanath  



EXAMPLE: 

TOPOLOGICAL TECHNIQUES  

FOR SCIENTIFIC FEATURE EXTRACTION 

 



Topological and Statistical Analytics of 
Turbulent Combustion 

§  Combustion provides 85% of the US energy needs 
§  Low emission/temperature engines will operate at 

combustion regimes currently poorly understood 
§  Need new understanding of turbulence-chemistry  

to predict efficiency and pollutant emissions 

Requirement: exploration of  flexible 
Feature definition, analysis and tracking 

Goal: understanding turbulent combustion 

§  Accurate combustions simulation generate massive 
datasets that are hard to manage in postprocessing 

§  The data needs to be inspected by the user since selection 
parameters are not predetermined 

§  For each parameter selection  
§  the user needs to get access the shape 

characterizations 
§  understand the consequence on events like merging 

or splitting of features of time 

Challenges 

§  Develop robust feature definition 
§  Allow user to change parameters interactively 

and evaluate consequences on results 
§  Track features over time based on variable 

correspondence parameters 
§  Concurrent analysis of multiple fields restricted 

to the features of interest 

(Upper left): Simulation of  turbulent combustion 
(Lower left): Segmentation of  the data based on a particular 
feature definition 

Application: 
§  Turbulent Combustion 

Contact: Valerio Puscucci 



TOPOLOGIKA: Time-Varying Data Analysis 
with Time Activity Curves 

Robust analysis based on topological definitions 
Fast parallel evaluation of dependent statistics 
Compute graph abstractions for multi-resolution feature 

representation 
Computer graph models of concurrent tracking of 

features at multiple scales  
Fast access and computation of dependent statistics 

 

Result/Impact Technology 

Topological model (left) representing multiple possible 
nested features of  interest (right).  

(Left) Presentation of  a feature selected in 3D. (Right) 
Corresponding tracking graph. The color selection 
(red) used on the feature is used to highlight its time 
evolution on the graph. 

§  Orders of magnitude in data reduction from raw 
data to unrestricted feature space 

§  Orders of magnitudes speedup reducing batch 
jobs into interactive processing 

§  Enable scientists to explore the feature space 
interactively and understand 

§  Allow data-driven characterization of turbulence 
from burning cell analysis 

Contact: Valerio Puscucci 



EXAMPLE: 

USE OF PARALLEL VISUALIZATION FOR 

REMOTE  MULTI-DISCIPLINE SCIENTISTS 

(VIRTUAL REACTOR) 



Analysis and Visualization of  Light Water Reactors 

§  Use leadership-class computing for engineering 
design and analysis of next generation reactors, life 
extension, and higher fuel burnup (“virtual reactor”) 

Requirement:	
  Remote	
  Interac6ve	
  Analysis	
  

Simula6on	
  Goal:	
  

§  Large data generated by multiple, high resolution 
simulation codes 

§  High core count simulations 
§  Multi-physics, multi-materials 
§  Whole reactor core 

§  Size of data requires multi-site, remote access 

Challenges	
  

§  Interactive 3D visualization of disparate 
simulation data 

§  Support for large numbers of remote, multi-
discipline scientists and engineers 

§  Multi-physics, multi-material simulations across 
a broad range of both spatial and temporal 
scales 

Applica6on:	
  
§  CASL: Consortium for Advanced Simulation of 

Light Water Reactors  

Contact: Dave Pugmire 



Analysis and Visualization with VisIt 
Result/Impact	
  Technology	
  

VisIt: Turnkey, general purpose tool for large data 
analysis and visualization 

Client/server architecture for remote visualization on 
analysis clusters and supercomputers 

Demonstrated scaling to > 100K cores 
Plugin architecture for flexibility, and extensibility 

§  Client-server architecture allows scientists to 
easily perform analysis and visualization 
remotely using analysis clusters, or 
supercomputers. 

§  Allows scientists to explore simulation results at 
a variety of scales, including: full reactor core, 
materials, and structural components. 

§  Scripted, comparative visualizations were 
critical in validating new computational 
techniques for power distribution. 

Full core, and pin assembly transport simulations 
rendered in VisIt using the parallel volume 

renderer. 
Validation study comparing assembly 
reactor core power calculations from 

two different codes Contact: Dave Pugmire 



 EXAMPLE: 
 

QUERY-DRIVEN VISUALIZATION 



Application: Laser Plasma Accelerator Modeling 

Beam Selection 
Parallel coordinates view of t = 12 

Grey particles represent initial selection 
(px > 2*109) 

Red particles represent “focus particles” in first wake 
period following pulse 
(px > 4.856*1010) && (x > 5.649*10-4) 

 
Volume rendering of plasma density with focus particles 
included in red (t = 12) 

Helps locate beam within wake 
 
 
Approach/Impact 
Integration of the parallel index/query system FastQuery 

with VisIt, enabling high-performance query-driven 
data analysis 

Enable for the first time detailed analysis of massive 
particle dataset of unprecedented size in real-time 

 

 

Contacts: Wes Bethel, John Wu 



EXAMPLE: 

SIDE-BY-SIDE VISUALIZATION 



Side-by-Side Volume Visualizations of Time 
Dependent Behavior - Laser Back Scatter 

Ability to view data using a client/server architecture 
using VisIt 

Ability to quickly generate side-by-side animations of 
key physics quantities to understand time 
dependent behavior 

Automated movie generation makes it easy for the 
user to see time evolution of data with different 
views and transfer functions. 

Extreme data size generated by high resolution 
simulation (220 billion cells) 

 
 

 

Result/Impact 
Technology 

§  Client/server architecture allows the user to 
view his data on his desktop without moving the 
data 

§  Ability to interactively set transfer function to 
bring out features of interest at key points in the 
simulation 

§  This is the first time scientists could see how 
the backscatter was forming. Orthogonal slices 
was inadequate, since this was a 3d 
phenomenon. This helps them design the target 
and laser pulse timing.  

Input beam Back scatter 

Reduced input beam corresponds to high back scatter 

Contact: Eric Brugger 



 EXAMPLE: 
 

IN SITU DATA REDUCTION 



Promising Ideas for larger scale data: 
and User-Assisted Data Reduction 

Importance-Driven Analysis  
•   In situ analysis incorporates analysis routines into the simulation code. This technique allows 
   analysis routines to operate on data while it is still in memory. 
•  One way to take advantage of in situ techniques is to perform initial analysis for the purpose 
   of data reduction.  With help from the application scientist to identify features of interest, we 
   can compress data of less interest to the scientist, reducing I/O demands during simulation 
   and further analysis steps. 

The feature of interest in this case is the 
mixture fraction (white surface). Colored 
regions are a volume rendering of the HO2 
variable (data courtesy J. Chen (SNL)). 
 
By compressing data more aggressively the 
further it is from this surface, we can attain a 
compression ratio of 20-30x while still 
retaining full fidelity in the vicinity of the 
surface.  

Contact: Kwan-Liu Ma 



 EXAMPLE: 
 

 PARALLELIZATION OF LARGE-SCALE 3D MOVIES 



Analysis and Visualization of  Magnetic Reconnection 

Requirement:	
  Remote	
  Interac6ve	
  Analysis	
  

Simula6on	
  Goal:	
  
§  To understand the 3D evolution of tearing modes – a 

type of plasma instability that spontaneously 
produces magnetic reconnection while giving rise to 
topological changes in the magnetic field. 

§  Large data size generated by high resolution simulation 
§  Simulation on 98304 cores 
§  6.4 billion cells 
§  1.5 trillion particles 
§  57 TB data 

§  Only remote access to the supercomputer 
§  Lack of dedicated visualization resources 

Challenges	
  

§  Interactive 3D visualization of simulation data 
§  Particle data 
§  Mesh data 

§  Comparison with theoretical expectations 
§  Rapid exploration due to limited availability of 

supercomputer to run large simulations 

Applica6on:	
  
§  Simulation of magnetic reconnection by Bill 

Daughton (LANL) and Homa Karimabadi (UCSD) 

Contacts: Berk Geveci, Jim Ahrens 



Remote Visualization with ParaView 
Result/Impact	
  Technology	
  

ParaView: general purpose data analysis and 
visualization tool focused on large data 

Client/server architecture for remote visualization on 
supercomputers 

Designed to be extensible: I/O routines and domain-
specific algorithms developed by science teams 

§  Allowed scientists to remotely analyze and 
visualize their data when it is not possible to 
copy locally 

§  Allowed scientists “to rapidly explore the grid 
data to understand the 3D evolution of 
magnetic reconnection” 

§  As expected, a spectrum of tearing instabilities 
develops which interact, forming new current 
sheets and triggering secondary tearing 
instabilities 

Two isosurfaces showing the structure of 
particle density (blue) and current density (red).  

Contacts: Berk Geveci, Jim Ahrens 



 EXAMPLE: 
 

 SCALING TO TRILLION PARTICLES 



Parallel I/O and Analysis of a Trillion Particles 
 

CAM5 AR Event 

•  Trillion particle plasma physics simulation conducted on 120,000 cores @NERSC 
•  Enhanced Parallel HDF5 obtained peak 35GB/s, and 80% sustained I/O rate 
•  FastBit was used to index 30TB timestep in 10 minutes and query in 3 seconds 
•  Software enabled scientists to examine and gain insights from the trillion particle dataset for the 

first time: 
•  Confinement of energetic particles by the flux ropes 
•  Asymmetric distribution of particles near the reconnection hot-spot 

Magnetic reconnection from a plasma physics simulation (Left). Scientists were able to query 
and find an asymmetric distribution of particles near the reconnection event (Right) using our 
software tools.  Rendering by VisIt. 

Contacts: Prabhat, John Wu 
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Summary of Plan for Integration of 
Visualization Accelerator Technology  

Scientists
  

Visualization ToolKit 
Library   

DAX 
Focus: 

Visualization 
Developers 

EAVL 
Focus: 

Advanced Data 
Models 

PISTON 
Focus: 

Portability 

VTK-Threading 
Focus: 

Evolutionary 
performance 
improvement 

use general-purpose visualization tools such as: 

these tools are built on the: 

which will integrate these accelerator technology R&D efforts:  

& 



 EXPERIMENTAL DATA 



Experimental data – e.g. ALS 

•  Domain scientists are routinely able to generate10,000's to 100,000's of images 
in a few days of running.  

•  Such data volumes cannot be analyzed individually, but rather must rely upon 
automated methods that translate Materials Science descriptions to input for 
modeling and simulation. 

•  The imaging data analysis involves reconstruction of large 3D images, 
segmentation of the images into sub-regions, discrimination of multiphase solid 
materials, identification of microstructures, and calculation of statistical 
correlation functions (e.g. surface, pore-size). 

Courtesy of Craig Tull, LBNL 



What about experimental data? 
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Option 1 

•  Move all data to a data center that keep tracks and archives data? 
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Option 2 
-  Perform analysis, data reduction, and visualization (in-situ) 
-  Then move data to a shared facility for management and distribution of reduced 
          experimental data 
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Summary 
•  Many of the tools in the SDAV institute have been developed over 

many years and are robust and well-documented  
•  Some of the tools have been designed to take advantage of high 

level parallelism 
•  Such tools have been used for multiple scientific domains, but often 

require collaboration between application scientists and tool experts;  
that is the role of SDAV 

•  For anticipated future needs, tools are being enhance in  several 
ways: 
•  Scale tools for high parallelization levels 
•  Adapt tools to take advantage of new hybrid hardware (CPUs + 

GPUs), and hybrid storage (disk and SSDs)  
•  minimize data movement between nodes 
•  Adapt tools for in situ processing and analysis to provide early 

insight of the generated data 
•  Compress and index data in situ for both in situ and post-

processing analysis 



THE END 


