Connecting Lattice QCD and Non-relativistic Effective Theory:
A Multi-Scale Approach to Nuclear Physics
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0 Physics motivations and applications
0 Scales and scale separation in nuclear physics

0 Lattice QCD interface
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0 Weaker (~50 MeV) attractive mid-range interaction
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0 Not unique to NP: MeV = meV: NN —0,0;



Traditional Potential-Model
Framework

0 Cannot solve the many-body Schroedinger equation
in an infinite Hilbert space

0 Work in a truncated, finite space P -- generally a
C.l. space of low-momentum or -energy basis states

0 Must renormalize the interaction to account for the
omitted Q =1-P space

Develop an approximate

“softer” VnnE to enable
a many-nucleon
calculation in a finite P

0 Both semi-analytic and phenomenological approaches
are pursued

UV and IR
integration

energy-dependent

generally done
poorly



Traditional Potential-Model

Framework

|

Perform a C.l. calculation
in P to obtain “‘the wave
function”

o Bases ~ 10'%are currently employed in NP
(e.g., UNEDF/NUCLEI)

0 The basis is explicitly anti-symmetric (Slater determinants)



Lattice QCD

L pp

0 Employs the exact Lagrangian of the strong interaction
0 Discretizes the continuum in space and time

0 Sums QM paths by Monte Carlo: has been applied to NN system
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0 While there is a fermion sign problem in such Monte Carlo simulations, well-defined
plateau found in NN system prior to decay to the bosonic state



The Bridge: HOBET

o0 Conventional C.I. bases are explicitly antisymmetry, but converge slowly
= the range in r that a C.I. basis spans grows as ~ /A

o Consider the C.I. basis - Slater determinants in an harmonic oscillator basis -
as a tool to an effective theory:

= only compact basis that preserves the translational invariance of the full S.E.

0 Conventionally PW taken from self-consistent solution of Bloch-Horowitz equation

H"PU = EPY Heﬂ”:P[H+ QH] H=T+7V

E—QH

o In HOBET, this is reorganized to separate out distinct UV and IR corrections to H°

E Q E
H" =p T-T=T+V+V 4 p
E—TQ[ E- TV ES QHQ ]E—QT
The ET NN substicution: ¢ /2 |af0(7) + a7} o %2 +O(FAVE) 4. ] e

(finite, exact expansion)

0 If a substantial numerical calculation is done in P: |) expansion converges rapidly,
can be truncated at low order, NNLO and 2) the a(E)s — constants (scale separation)
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The treatment is analytically continuous in E: can be extended to E>0 (scattering)
For E>0 or E<O the ET provides only P, W

If this program is executed faithfully, however, one has two long-range projections
/d?" T e_r2/2\IJ(fr) /df' TA_QG_T2/2\IJ(T)

By equating the ratio of these projections to the corresponding ratio of the
projections of the asymptotic wave function, one obtains an implicit relation

I 1
{a%%,a?j%{@,....} < kcoto = —a+§rok2+... ~Ha,rg, ...}

Provided A > 8 this matching can be carried out through NNLO with high accuracy

The bridge: This matching can be done to experiment or to LQCD. Two “wins”
= The UV/IR scale separation has enabled a direct construction of the effective
interaction in P: one has avoided the introduction of a NN potential and
the difficult problem of integrating out its high-momentum terms
= Have a clean matching to LQCD, but no sign problem because the
effective theory is formulated in an antisymmetric C.I. basis
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The Applied Math/CS Problems in HOBET

0 Calculation in P a self-consistent version of the usual C.I. large-sparse-matrix problem
H¢/(E) PV = E PV

= this must be iterated to convergence

= it must be executed for each needed state (or E): not finite-dimensional
in E despite the finite Heff for any given E

= the underlying expansion in short-range operators is both in derivatives
and in number of nucleons interacting at short range in Q at one time:

more complicated interactions must be treated to demonstrate convergence
numerically

0 The ultraviolet physics is embedded in the kinetic energy Lee-Suzuki operator

E—EQT‘O‘> - [P (EET> Pll E?T’O‘>

= this requires an inversion of a sparse, one-parameter matrix in P

. 1 . .
o The fitting of the {ar0.anLOs ANy} to {@;70,V2,. ..} is nontrivial because
PW is an implicit function of the former

= need to find methods to do this systematically



First application: Hadronic parity nonconservation (see poster)

0 Main goal: Neutral-current-mediated weak NN interaction (not yet isolated exp.)

0 Attractive target for us because
= strong interaction can be matched to experiment, weak couplings to LQCD
= the bridge from NN LQCD to light nuclei is critical to the global analysis
= there is a significant new experimental program underway at the cold

neutron beam-line of the SNS
= an anomaly is apparent in
past measurements

Fundamental Neutron Physics Facility
at the SNS. Beamline 13

Cold Polarized neutron experimental area
on main beamline

UCN experimental area in external
building. 8.9 A beamline extracted
via double-crystal monochromator
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HPC Resources at LLNL have
enabled these calculations

other channels

To confront
experiment, will
heed to look at A| 0

uark loops
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Overarching goal: Connect Cold
QCD to Nuclear Many-body Physics
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Multi-scale problem: HPC intensive



Finite-volume techniques
are key
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inite-volume techniques
in Nuclear Physics
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Beyond two-particle
scattering
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e.g. Extended
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Looking forward. ..

*Stochastic methods for quark loops in multi-hadron

systems and quark-field tensor contractions
*Al=0 parity-violating interaction
eKaon-neutron

eFinite-volume effective theories for multi-hadron

S)’Stems -
. . N —_—
e T hree-neutron interaction N
*Hyper-nuclei structure XN

o &

e

e|nelastic formalism
*Nuclear reactions |
*|CF prompt diagnostics 7// \%

O He + 3.5 MeV
n+ 14.1 MeV



...onh the horizon

Weak Scaling for BAGEL DWF CG Inverter

700

525

Speedup (TFlops)

175

LLg Lawrence Livermore
National Laboratory

sEil

0 75000 150000 225000

# of BG/Q cores
Tests were performed with the STFC funded DiRAC facility at Edinburgh

Studies performed by M. Buchoff,
C.Schroeder, P. Vranas, ].Wasem

Strong Scaling of BAGEL DWF CG Inverter on 644 volume

(o]
o

Performance (GFlops/node)

—
o

l Lawrence Livermore
National Laboratory

SEiIA

0 75000 150000 225000

# of BG/Q Cores

Tests were performed with the STFC funded DiRAC facility at Edinburgh

300000

poyong ‘| JO As934nod sain3i4



Nuclear Physics as a Predictive Science

CallLat shows how
past SciDAC efforts
can enable new theory
approaches because

of the numerical
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