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Introduction – Motivation

Why Uncertainty Quantification (UQ) ?

Assessment of confidence in computational predictions

Validation and comparison of scientific/engineering models

Design optimization

Use of computational predictions for decision-support

Assimilation of observational data and model construction

Why UQ in SciDAC ?

Explore model response over range of parameter variation

Enhanced understanding extracted from computations

Particularly important given cost of SciDAC computations
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QUEST Goals

1 Advance the state of the art in UQ theory, methods, and
software, addressing UQ challenges with extreme scale
computational problems

High-dimensionality
Nonlinearity
Sparse data

2 Provide expertise, advice, and state of the art UQ
algorithms and software tools to SciDAC projects

UQ software products
SciDAC partnerships
Outreach: UQ tutorials, summer school, web
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Scope

The scope of QUEST covers a range of UQ activities including:

UQ problem setup

Characterization of the input space

Local and global sensitivity analysis

Adaptive stochastic dimensionality and order reduction

Forward and Inverse UQ

Fault tolerant UQ methods

Model comparison and validation
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Key Elements of our UQ strategy

Probabilistic framework
Uncertainty is represented using probability theory

Parameter Estimation, Model Calibration
Experimental measurements
Regression, Bayesian Inference

Forward propagation of uncertainty
Polynomial Chaos (PC) Stochastic Galerkin methods

– Intrusive/non-intrusive
Stochastic Collocation methods

Model comparison, selection, and validation

Model averaging

Experimental design and uncertainty management
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Team Expertise and Capabilities

Institution Expertise Tools

SNL Forward and inverse UQ methods, DAKOTA
design under uncertainty UQTK

USC Intrusive UQ methods
probabilistic modeling

Duke Sparse adaptive forward UQ methods

UT Large scale inverse problems QUESO
validation, inverse UQ

LANL Gaussian process modeling, inverse UQ GPMSA

MIT Calibration, adaptive sampling,
inverse UQ, experimental design
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QUEST UQ Software tools

DAKOTA

Optimization and calibration

Non-intrusive UQ

Global Sensitivity Analysis

> 10K registered downloads

QUESO

Bayesian Inference

Parallel MultiChain MCMC

Bayesian Model Analysis

Model Calibration

GPMSA

Bayesian Inference

Gaussian Process Emulation

Model Calibration

Model discrepancy analysis

UQTk

Intrusive PC UQ

Non-intrusive sampling

Customized sparse PCE

Random fields
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QUEST Partnerships

DOE Project Title Lead PI QUEST

NNSA Parallel Dislocation Simulator T. Arsenlis Najm
(ParaDiS) LLNL SNL

FES Center for Edge Plasma Physics C.S. Chang Moser
Simulation (EPSI) Princeton UT

FES Plasma Surface Interactions: Bridging B. Wirth Higdon
from the Surface to the Micron Frontier ORNL LANL

BER Predicting Ice Sheet & Climate Evolution P. Jones Eldred, Ghattas
at Extreme Scales (PISCEES) LANL SNL, UT

BER Multiscale Methods for Accurate, Efficient B. Collins Debusschere
& Scale-Aware Earth System Modeling LBNL SNL

NP Nuclear Computational Low Energy J. Carlson Higdon
Initiative (NUCLEI) LANL LANL

HEP Computation-Driven Discovery S. Habib Higdon
for the Dark Universe ANL LANL

HEP Community Project for Accelerator P. Spentzouris Prudencio
Science & Simulation (ComPASS) FNAL UT
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Outreach Activities

Website
www.quest-scidac.org
Production version will be publicly accessible soon

UQ Tutorials in workshops/conferences
SAMSI UQ workshop, Raleigh, NC; Sep 7-9, 2011
SIAM Conference on UQ, Raleigh, NC; Apr 2-5, 2012

UQ Summer School
USC, LA; Aug 22-24, 2012

UQ Tools Tutorial
Hands-on practice with UQ software tools
SNL, Livermore, CA; Oct 22-23, 2012.
Announcements went out in late July
http://cadmus.usc.edu/Quest-Tutorial

– Some openings still available
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SNL: Software: DAKOTA – dakota.sandia.gov
M. Eldred, J. Jakeman

Development of interfaces: QUESO–DAKOTA–GPMSA
Ongoing
DAKOTA interfaces to both
C++ GPMSA implementation using QUESO components

Stochastic collocation
Nodal or hierarchical interpolation on structured grids
Interpolants may be local or global

– value-based or gradient-enhanced
Automated refinement

– uniform, dimension-adaptive, or locally-adaptive
Hierarchical surplus error estimates for values and
gradients applied to QoI (e.g., response covariance)

Compressive sensing: basis pursuit and basis denoising
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DAKOTA: Application in Nuclear Reactor Modeling
M. Eldred

Work with CASL energy innovation hub

PCE/SC with uniform/adaptive refinement vs LHS
n = 4, smooth, mild anisotropy
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n = 10, discontinuous, high anisotropy
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SNL: Software: UQTk – www.sandia.gov/UQToolkit
B. Debusschere, C. Safta, K. Sargsyan

Version 1.0 published under the GNU LGPL
Intrusive PC functionality

New release targeted for Fall 2012
Intrusive and non-intrusive utilities
User-specified multi-index capabilities

Flexible efficient sparse tensor representations
Effective for high-dimensional systems

Random fields:
Covariance matrix estimation (many samples)
Karhunen-Loève expansions (KLEs)

Matlab version

Example/benchmark problems, tutorial materials
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SNL: Algorithms: Gradients & Sparsity
M. Eldred, J. Jakeman, K. Sargsyan, C. Safta, B. Debusschere, H. Najm

Hierarchical interpolation with generalized sparse grids
Gradient-enhancement
Error indicators leverage both value and gradient surpluses

Building Sparse PC representations
Compressed Sensing (CS) – ℓ1 regularization

– cross validation, tolerances for model choice
Bayesian Compressed Sensing (BCS) – Laplace priors
BCS/CS comparisons on Genz functions – 5-10d

– Similar convergence with no. of samples
– Slightly higher accuracy with CS
– BCS: O(100)× reduction in no. of PCE terms

discovery of sparse signals:
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SNL: Algorithms: Missing Data
H. Najm, B. Debusschere, C. Safta, K. Sargsyan, K. Chowdhary

Context

Missing/failed measurements or computational samples
Partial specification of uncertain information

Error bars vs. joint PDF

Processed data products

Imputation methods

Existing data ⇒ probabilistic prediction of missing data

Data Free Inference (DFI) algorithm

Given information ⇒ probabilistic models of missing data
– Application in chemical ignition
– Extension to processed data products
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LANL: GPMSA & BART Developments
D. Higdon, J. Gattiker

New release of GPMSA for sensitivity analysis and
computer model calibration using Bayesian methods

Tutorial material
Range of sample problems

– sensitivity, calibration, & multivariate output

Prototype parallel
implementation of the
Bayesian additive
regression tree (BART)
for HPC.

linear scaling
up to ∼50p
tests with higher proc
counts in progress
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UT-Austin: Scalable Parallel Algorithms for
Extreme-Scale Stochastic Inverse Problems
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler (also funded by AFOSR and NSF)

Stochastic Inverse Probs:
PDEs & high-dim parameter
spaces (from discretized fields)

Current methods are prohibitive

Challenges:
appropriate choice of prior
consistent discretizations
(guarantee convergence to
infinite-dim problem)
scalable parallel MCMC
algorithms

Recent accomplishments:

Consistent discretizations via
appropriate mass matrix weightings

Prior defined by inverse of elliptic
operator; carried out by multigrid

Low rank approximation of Hessian
enables sampling of Gaussianized
posterior in dimension-independent
number of forward solves

Scaling to 1M parameters and 100K
processor cores
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Example: Extreme-scale Seismic Inversion
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler

linearized 3D global seismic inversion

1.07M earth model parameters

630M wave propagation unknowns

100K cores on Jaguar (ORNL)

2000× reduction in effective problem
dimension due to low rank approx

Top row: Prior samples

Bottom row: Posterior samples

Difference between rows indicates
information gained from (and
uncertainty reduced due to) data

Gordon Bell Prize finalist, SC12
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UT-Austin: Software: QUESO
K. C. Estacio-Hiroms, E. E. Prudencio, K. W. Schulz (also funded by NNSA)

Improvement of QUESO-DAKOTA usability
Periodic output of samples
Output of extra information
Informative output summary

Implementation of GPMSA models and algorithms
QUESO capabilities will be usable through DAKOTA

Preparation of tutorial material
Bayesian inversion, and forward propagation of uncertainty
Object-oriented mapping of mathematical concepts
Solution of statistical inverse problems with DRAM MCMC
Solution of statistical forward problems with Monte Carlo
Use of parallel computing for statistical analysis
References to Bayesian analysis, MCMC, Monte Carlo,
C/C++, MPI
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Duke: Stochastic Preconditioning
O. Knio, A. Alexanderian, O. Le Maître

Developed a multiscale Bayesian preconditioning approach
Demonstrated capability to simultaneously

address stiffness and noise
represent noisy outputs w/sparse, low-order, PCEs

Order of magnitude reduction in # of samples / replicas
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Duke-MIT: Sparse Adaptive Sampling
J. Winokur, P. Conrad, O. Knio, Y. Marzouk

Developed a sparse adaptive pseudospectral sampling
algorithm

accommodates arbitrary admissible stencils
including a maximal polynomial basis

– without internal aliasing

Analysis of algorithm performance based on existing
Ocean General Circulation Model (OGCM) databases

Demonstrated order-of-magnitude computational savings
in simulations of the ocean circulation in the Pacific
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MIT: Large-Scale Bayesian Inference
T. Moselhy, Y. Marzouk

Current state of the art

Markov chain Monte Carlo (MCMC) sampling is the
workhorse algorithm for Bayesian inference and prediction

Challenges: enormous computational effort, difficult
proposal design, insufficient convergence diagnostics

Inference with optimal maps

New approach: find a deterministic map that pushes
forward the prior measure to the posterior measure

Converts inference to an optimization problem, with natural
convergence diagnostics

Outperforms MCMC in efficiency and accuracy on a variety
of inference problems, with 103 dimensions or more
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MIT: Large-Scale Bayesian Inference
T. Moselhy, Y. Marzouk
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(above) sequence of maps yields samples from
non-Gaussian posterior in a chemical kinetic system

Current work on map-based inference:
Hierarchical Bayesian models
Parallel algorithms for stochastic optimization
Sequential data assimilation (i.e., filtering and smoothing)
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MIT: Optimal Experimental Design
X. Huan, Y. Marzouk

How to choose observations or experimental conditions
optimally?

Bayesian approach: maximize expected information gain for
parameter inference, prediction, model discrimination, etc

Key computational ingredients:
Surrogates for physical model describing experiments
Statistical estimators and stochastic optimization methods

Recent accomplishments: stochastic approximation and
sample-average approximation for optimal Bayesian
design, using estimators of mutual information gradient
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USC: Constrained & Adaptive Constructions
E. Kalligiannaki, R. Tipireddy, G. Ghanem

Develop Constrained Stochastic Representations

Positive random variables

More general constraints on either function values or
values of nonlinear functionals of the random variables

Develop Bases Adapted to Quantity of Interest

Scales linearly with stochastic dimension
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USC: Constrained Stochastic Representations
E. Kalligiannaki, G. Ghanem

I = {y(ω) ∈ L2(Ω,Σ(H),P) : y(w) satisfies constraints ∀ω}

The projection of y ∈ L2 on I:

Sample from prior PC expansion

Delete realizations that do not satisfy constraints

Recompute PC coefficients from remaining realizations
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Improve Convergence of Stochastic ODE Generator for constrained populations
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USC: Adaptation to Quantity of Interest (QoI)
R. Tipireddy, G. Ghanem

Expand u(ξ): polynomials in η = Aξ

with proper choice of A, the
measure of the solution is
concentrated along leading η1

dimension

A is chosen so that η1 contains all
Gaussian content of QoI
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Closure

Work on UQ software and algorithms development
Computational efficiency
Functionality, usability, scalability
Adaptivity, sparsity, preconditioning
Reduced-order, low-rank
Convergence, stability
Partial information, missing data

Robustifying algorithms for large-scale applications

Software integration well along the way

Outreach via web, tutorials, and summer school

SciDAC partnership activities getting off the ground
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