
QUEST Software Tools for Uncertainty Propagation and Inference
Michael Eldred1, David Higdon2, Ernesto Prudencio3, Bert Debusschere1

1Sandia National Laboratories, 2Los Alamos National Laboratory, 3The University of Texas at Austin
Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) project funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

www.quest-scidac.org

UQ in Chemical Systems

DAKOTA (SNL) (dakota.sandia.gov) is a C++ application that provides
a variety of non-intrusive algorithms for design optimization, model
calibration, uncertainty quantification, global sensitivity analysis, parameter
studies, and solution verification. It can be used as either a stand-alone
application or as a set of library services, and supports multiple levels of
parallelism for scalability on both capability and capacity HPC resources.

• Contact: dakota-developers@development.sandia.gov
DAKOTA Input File

• Strategy

• Method

• Model: Variables,

Interface, Responses

DAKOTA Output Files

• Raw data (all x- and f-values)

• Sensitivity info

• Statistics on f-values

• Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynam
Premo high speed flow
 (your code here)

Code

Input

Code

Output

DAKOTA Parameters File
{x1 = 123.4}

{x2 = -33.3}, etc.

Use APREPRO/DPREPRO

to cut-and-paste x-values

into code input file

User-supplied automatic

post-processing of code

output data into f-values

DAKOTA executes
sim_code_script

to launch a

simulation job

DAKOTA Results File
999.888 f1

777.666 f2, etc.

DAKOTA Executable

Sensitivity Analysis,

Optimization, Uncertainty

Quantification, Parameter

Estimation

GPMSA (LANL) (www.stat.lanl.gov/source/orgs/ccs/ccs6/gpmsa/gpmsa.html) is a MATLAB
toolbox that focuses on Bayesian inference using a Gaussian process response surface,
trained from an ensemble of forward model runs, to minimize the number of forward model
calls required in the inference. It allows for global sensitivity analysis, forward propagation of
uncertainty, model calibration/parameter estimation, and predictions with uncertainty.

• Contact: David Higdon, dhigdon@lanl.gov

Dave Higdon, Jim Gattiker, Brian Williams, Maria Rightley, “Computer Model Calibration Using High Dimensional Output,”
Journal of the American Statistical Association, Volume 103, Issue 482, 2008, pp. 570-583.

Inputs
x controllable

t uncertain physics
 best, unknown value of t

y(x) = (x) + (x)

(x) = (x,) + (x)

field data
reality

observation
error

computer
model discrepancy

Basic steps in calibration analysis:
1. Assume initial probability dist’n
 for physics uncertainties .
2. Calibrate parameters to field
 data and simultaneously infer
 model discrepancies.

Code predictions based on
initial uncertainty in

Code predictions
based on calibrated

Predictions of discrepancy Predictions of reality

prior calibrated

UQTk (SNL) (www.sandia.gov/UQToolkit):
• A library of C++ and Matlab functions for propagation of

uncertainty through computational models
• Mainly relies on spectral Polynomial Chaos Expansions (PCEs)

for representing random variables and stochastic processes
• Complementary to production tools, UQTk targets:

• Rapid prototyping
• Algorithmic research
• Outreach: Tutorials / Educational

• Version 1.0 released under the GNU LGPL
• Utilities for intrusive stochastic Galerkin

• New release in Fall 2012
• Nonintrusive quadrature-based methods
• Bayesian inference
• Matlab version

• Source code, tutorials, examples available on website
• Contact: Bert Debusschere: bjdebus@sandia.gov

A typical application software stack. QUESO requires the input of

a likelihood routine for statistical inverse problems and of a QoI

routine for statistical forward problems. These application level

routines provide the bridge among the statistical algorithms in

QUESO, the model knowledge in the model library, and relevant

model specific data available for calibration or validation.

QUESO (UT) is an MPI/C++ library that provides statistical algorithms for Bayesian inference,
model calibration, model validation, and decision making under uncertainty. It naturally maps,
into C++ classes, the mathematical entities present in stochastic problems and solution
methods, thus enabling the easy integration of new algorithms.

• Contact: Ernesto Prudencio, prudenci@ices.utexas.edu

E. E. Prudencio and K. W. Schulz. The parallel C++ statistical library QUESO: Quantification of Uncertainty for Estimation, Simulation and Optimization. In M. Alexander
et al., editors, Euro-Par 2011 Workshops, Part I, volume 7155 of Lecture Notes in Computer Science, pages 398-407. Springer-Verlag, Berlin Heidelberg, 2012.

Process of quantifying the effect of uncertainties typically includes:
• (Global) sensitivity analysis: identification of input set with greatest influence on output QoIs
• Uncertainty characterization: fit or infer from observable data; parametric/non-parametric/KDE
• Uncertainty propagation: input distributions output QoI distributions
• Decision making: model validation, prediction (interpolation, extrapolation), design

QUEST software tools support a range of:
• UQ studies: sensitivity analysis, uncertainty propagation, statistical inference
• Environments: rapid prototyping in production computing in compiled

 interpreted languages languages on parallel platforms
• Intrusion: embedded linked black box

An interoperable set of tools that can be tailored:
• GPMSA C++ version in QUESO; DAKOTA + QUESO + emulators
• Production deployment of stable capabilities in frameworks
• Close collaboration of SAPs with library developers for custom capabilities

Iterator

Model

Strategy: control of multiple iterators and models

Iterator

Model

Iterator

Model

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynch local
Message passing
Hybrid
Nested scheduling
 Master-slave/dynamic
 Peer/static

Parameters
Model:

Design
 continuous
 discrete
Uncertain
 normal/logn
 uniform/logu
 triangular
 exp/beta/gamma
 EV I, II, III
 histogram
 interval
State
 continuous
 discrete

Application
 system
 fork
 direct
 grid
Approximation
 global
 polynomial 1/2/3, NN,
 kriging, MARS, RBF
 multipoint – TANA3
 local – Taylor series
 multifidelity
 ROM

Functions
objectives
constraints
least sq. terms
generic

Responses Interface Parameters

LHS/MC

Iterator

Optimizer ParamStudy

COLINY NPSOL DOT OPT++

LeastSq DACE
GN

Vector
MultiD

List

DDACE CCD/BB

UQ

Reliability

IntEst/Evid

JEGA CONMIN

NLSSOL
NL2SOL QMC/CVT

Gradients
numerical
analytic

Hessians
numerical
analytic
quasi NLPQL

Center PCE/SC

Strategy

Uncertainty LeastSq

Hybrid

SurrBased
OptUnderUnc

Branch&Bound/PICO

Optimization

2ndOrderProb

UncOfOptima
Pareto/MStart

ModelCalUnderUnc

Dropping a bowling ball from a tower
The time it takes a bowling to fall from different heights is recorded
for drops of 10, 20, …, 50 meters – a validation experiment dropping
a ball from 60m is also conducted. The uncertainty in the measured
drop times is normally distributed about the true time, with a standard
deviation of .1 seconds. The QOI is the drop time for the bowling ball
at a height of 100m. Since the tower is only 60m high, a
computational model is used to help make this assessment.

The conceptual model incorporates only acceleration due to
gravity g, allowing the computational solution used here to be
compared to an analytical solution for a verification assessment
of bowling ball drop times between 10 and 100m.

The physical constant g is assumed to be unknown, but between 8 and 12 m/s2 (light lines).
The five drop time measurements (black dots) constrain the uncertainty about g to the
probability density given by the dark line.

The drop times are produced by 11 computational model runs (light lines in (c) and (d)), each
at different values of g. GPMSA combines these simulations with experimental data to
constrain g (dark lines in (c)) and to produce predictions with uncertainty for drops from
heights above 50m (dark lines (d)).

Initial and constrained uncertainty for g

(a)

(d) (c)

(b)

Specifically, predictions with uncertainty for a validation
experiment – a drop of the bowling ball can be produced with
GPMSA, as well as for a drop of the bowling ball at 100m.

(e)

After calibrating the model,
which only accounts for
acceleration due to gravity
g, we find that the model
does not accurately predict
drop times for the
basketball and baseball.
Because of this, a model
discrepancy term is added
to the GPMSA analysis.

Simple	case	study:	dropping	balls	from	
a	tower	

• Can	get	field	data	from	tossing	
objects	off	of	floors	1-6.	

• Have	computa onal	model	
which	predicts	drop	 mes	
given	ball	radius,	density,	and	
flo

o

r .	

• Computa onal	model	has	
parameter	for	air	fric on	which	
depends	on	cross	sec on,	
density	and	velocity.	

• Have	baseball,	basketball,	golf	
ball,	tennis,	light	&	heavy	
bowling	balls.	

• Want	to	predict	so ball	drop	

me	from	10th	floo r 	(100m).	

• Also	want	to	understand	the	

value	of	various	types	of	
poten al	experiments	&	
simula ons	for	the	so ball	
predic on	at	100m.	

Slide	1	

radius	

d
e
n
si
ty
	

physics	design	space	

golf	

baseball	

tennis	

so ball	

basketball	

light	bowling	

bowling	

Figure (d) shows
predictions using the
discrepancy adjusted
model described above.
The added uncertainty
is due to uncertainty in
both g and α in this
model.

(a)

(c)

(b)

Using a model discrepancy term to predict drop times

(d)

A discrepancy adjusted prediction is produced by
adjusting the simulated drop times according to:

drop time = simulated drop time + α × drop height

where α depends on the radius and density of the ball
(Rball,ρball). The model produces an estimate for α that
increases as ball density decreases (Figure (c)). This
is accomplished by adding a linear discrepancy basis
term into the GPMSA formulation.

JAGUAR

Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Eldred, M.S., Gay, D.M., Haskell, K., Hough, P.D., and Swiler, L.P.,
"DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.2 User's Manual," Sandia Technical Report SAND2010-2183, updated Nov. 2011.

http://dakota.sandia.gov/
mailto:dakota-developers@development.sandia.gov
mailto:dakota-developers@development.sandia.gov
mailto:dakota-developers@development.sandia.gov
http://www.stat.lanl.gov/source/orgs/ccs/ccs6/gpmsa/gpmsa.html
mailto:dhigdon@lanl.gov
http://www.sandia.gov/UQToolkit
mailto:prudenci@ices.utexas.edu

