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UQ in Chemical Systems 

DAKOTA (SNL) (dakota.sandia.gov) is a C++ application that provides  
a variety of non-intrusive algorithms for design optimization, model 
calibration, uncertainty quantification, global sensitivity analysis, parameter 
studies, and solution verification. It can be used as either a stand-alone 
application or as a set of library services, and supports multiple levels of 
parallelism for scalability on both capability and capacity HPC resources. 

• Contact: dakota-developers@development.sandia.gov  
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DAKOTA Output Files 

• Raw data (all x- and f-values) 

• Sensitivity info 

• Statistics on f-values 

• Optimality info 

CALORE thermal analysis 
ALEGRA shock physics 
SALINAS structural dynam 
Premo high speed flow 
          (your code here) 
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DAKOTA Parameters File 
{x1 = 123.4} 

{x2 = -33.3}, etc. 

Use APREPRO/DPREPRO 

to cut-and-paste x-values 

into code input file 

User-supplied automatic 

post-processing of code 

output data into f-values  

DAKOTA executes 
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DAKOTA Results File 
999.888 f1 

777.666 f2, etc. 

DAKOTA Executable 

Sensitivity Analysis, 

Optimization, Uncertainty 

Quantification, Parameter 

Estimation 

GPMSA (LANL) (www.stat.lanl.gov/source/orgs/ccs/ccs6/gpmsa/gpmsa.html) is a MATLAB 
toolbox that focuses on Bayesian inference using a Gaussian process response surface, 
trained from an ensemble of forward model runs, to minimize the number of forward model 
calls required in the inference. It allows for global sensitivity analysis, forward propagation of 
uncertainty, model calibration/parameter estimation, and predictions with uncertainty.  

• Contact: David Higdon, dhigdon@lanl.gov  

Dave Higdon, Jim Gattiker, Brian Williams, Maria Rightley, “Computer Model Calibration Using High Dimensional Output,”  
Journal of the American Statistical Association, Volume 103, Issue 482, 2008, pp. 570-583. 
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Basic steps in calibration analysis: 
1. Assume initial probability dist’n 
 for physics uncertainties . 
2. Calibrate parameters  to field 
 data and simultaneously infer 
 model discrepancies.  
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initial uncertainty in  

Code predictions 
based on calibrated  

Predictions of discrepancy Predictions of reality 

prior calibrated 

UQTk (SNL) (www.sandia.gov/UQToolkit): 
• A library of C++ and Matlab functions for propagation of 

uncertainty through computational models 
• Mainly relies on spectral Polynomial Chaos Expansions (PCEs) 

for representing random variables and stochastic processes 
• Complementary to production tools, UQTk targets: 

• Rapid prototyping 
• Algorithmic research 
• Outreach: Tutorials / Educational 

• Version 1.0 released under the GNU  LGPL 
• Utilities for intrusive stochastic Galerkin 

• New release in Fall 2012  
• Nonintrusive quadrature-based methods 
• Bayesian inference 
• Matlab version 

• Source code, tutorials, examples available on website 
• Contact: Bert Debusschere: bjdebus@sandia.gov 

A typical application software stack. QUESO requires the input of 

a likelihood routine for statistical inverse problems and  of a QoI 

routine for statistical forward problems. These application level 

routines provide the bridge among the statistical algorithms in 

QUESO, the model knowledge in the model library, and relevant 

model specific data available for calibration or validation. 

QUESO (UT) is an MPI/C++ library that provides statistical algorithms for Bayesian inference, 
model calibration, model validation, and decision making under uncertainty. It naturally maps, 
into C++ classes, the mathematical entities present in stochastic problems and solution 
methods, thus enabling the easy integration of new algorithms.  

• Contact: Ernesto Prudencio, prudenci@ices.utexas.edu  

E. E. Prudencio and K. W. Schulz. The parallel C++ statistical library QUESO: Quantification of Uncertainty for Estimation, Simulation and Optimization. In M. Alexander 
et al., editors, Euro-Par 2011 Workshops, Part I, volume 7155 of Lecture Notes in Computer Science, pages 398-407. Springer-Verlag, Berlin Heidelberg, 2012. 

Process of quantifying the effect of uncertainties typically includes: 
• (Global) sensitivity analysis: identification of input set with greatest influence on output QoIs 
• Uncertainty characterization: fit or infer from observable data; parametric/non-parametric/KDE 
• Uncertainty propagation:  input distributions  output QoI distributions 
• Decision making:   model validation, prediction (interpolation, extrapolation), design 

QUEST software tools support a range of: 
• UQ studies:   sensitivity analysis, uncertainty propagation, statistical inference 
• Environments:  rapid prototyping in    production computing in compiled  

    interpreted languages    languages on parallel platforms 
• Intrusion:   embedded    linked   black box 

An interoperable set of tools that can be tailored: 
• GPMSA  C++ version in QUESO; DAKOTA + QUESO + emulators 
• Production deployment of stable capabilities in frameworks 
• Close collaboration of SAPs with library developers for custom capabilities 
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Dropping a bowling ball from a tower 
The time it takes a bowling to fall from different heights is recorded 
for drops of 10, 20, …, 50 meters – a validation experiment dropping 
a ball from 60m is also conducted.  The uncertainty in the measured 
drop times is normally distributed about the true time, with a standard 
deviation of .1 seconds.  The QOI is the drop time for the bowling ball 
at a height of 100m.  Since the tower is only 60m high, a 
computational model is used to help make this assessment.  

The conceptual model incorporates only acceleration due to 
gravity g, allowing the computational solution used here to be 
compared to an analytical solution for a verification assessment 
of bowling ball drop times between 10 and 100m.  

The physical constant g is assumed to be unknown, but between 8 and 12 m/s2  (light lines).  
The five drop time measurements (black dots) constrain the uncertainty about g to the 
probability density given by the dark line. 
  
The drop times are produced by 11 computational model runs (light lines in (c) and (d)), each 
at different values of g. GPMSA combines these simulations with experimental data to 
constrain g (dark lines in (c)) and to produce predictions with uncertainty for drops from 
heights above 50m (dark lines (d)). 

Initial and constrained uncertainty for g 

(a) 

(d) (c) 

(b) 

Specifically, predictions with uncertainty for a validation 
experiment – a drop of the bowling ball can be produced with 
GPMSA, as well as for a drop of the bowling ball at 100m. 

(e) 

After calibrating the model, 
which only accounts for 
acceleration due to gravity 
g, we find that the model 
does not accurately predict 
drop times for the 
basketball and baseball.  
Because of this, a model 
discrepancy term is added 
to the GPMSA analysis. 

Simple	case	study:	dropping	balls	from	
a	tower	

• Can	get	field	data	from	tossing	
objects	off	of	floors	1-6.	

• Have	computa onal	model	
which	predicts	drop	 mes	
given	ball	radius,	density,	and	
flo

o

r .	

• Computa onal	model	has	
parameter	for	air	fric on	which	
depends	on	cross	sec on,	
density	and	velocity.	

• Have	baseball,	basketball,	golf	
ball,	tennis,	light	&	heavy	
bowling	balls.	

• Want	to	predict	so ball	drop	

me	from	10th	floo r 	(100m).	

• Also	want	to	understand	the	

value	of	various	types	of	
poten al	experiments	&	
simula ons	for	the	so ball	
predic on	at	100m.	
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Figure (d) shows 
predictions using the 
discrepancy adjusted 
model described above.  
The added uncertainty 
is due to uncertainty in 
both g and α in this 
model.   

(a) 

(c) 

(b) 

Using a model discrepancy term to predict drop times 

(d) 

A discrepancy adjusted prediction is produced by 
adjusting the simulated drop times according to: 
 

drop time = simulated drop time + α × drop height 
 
where α depends on the radius and density of the ball 
(Rball,ρball).  The model produces an estimate for α that 
increases as ball density decreases (Figure (c)). This 
is accomplished by adding a linear discrepancy basis 
term into the GPMSA formulation. 
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